scholarly journals Genome-Wide Identification of New Reference Genes for qRT-PCR Normalization under High Temperature Stress in Rice Endosperm

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142015 ◽  
Author(s):  
Heng Xu ◽  
Jian-Dong Bao ◽  
Ji-Song Dai ◽  
Yongqing Li ◽  
Ying Zhu
2020 ◽  
Vol 52 (5) ◽  
Author(s):  
De-Gong Wu ◽  
Qiu-Wen Zhan ◽  
Hai-Bing Yu ◽  
Bao-Hong Huang ◽  
Xin-Xin Cheng ◽  
...  

2017 ◽  
Vol 16 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Hua Zhang ◽  
Heng Xu ◽  
Mengjie Feng ◽  
Ying Zhu

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Zhao ◽  
Huanling Yang ◽  
Mingjie Chen ◽  
Xiaoxia Song ◽  
Changxia Yu ◽  
...  

Housekeeping genes are important for measuring the transcription expression of functional genes; 10 traditional reference genes,TUB, TUA, GADPH, EF1, 18S, GTP, ACT, UBI, UBC,andH2A, were tested for their adequacy inLentinula edodes(L. edodes). Using specific primers, mRNA levels of these candidate housekeeping genes were evaluated in mycelia ofL. edodes, which were treated with high-temperature stress at 37°C for 0, 4, 8, 12, 18, and 24 hours. After treatment, expression stability of candidate genes was evaluated using three statistical software programs: geNorm, NormFinder, and BestKeeper. According to geNorm,TUBhad the lowest M values inL. edodesstrains 18 and 18N44. Using NormFinder, the best candidate reference gene in strain 18 wasTUB(0.030), and the best candidate reference gene in strain 18N44 wasUBI(0.047). In BestKeeper analysis, the standard deviation (SD) values ofUBC,TUA,H2A,EF1,ACT,18S, andGTPin strain 18 and those ofGADPHandGTPin strain 18N44 were greater than 1; thus, these genes were disqualified as reference genes. Taken together, onlyUBIandTUBwere found to be desirable reference genes by BestKeeper software. Based on the results of three software analyses,TUBwas the most stable gene under all conditions and was verified as an appropriate reference gene for quantitative real-time polymerase chain reaction inL. edodesmycelia under high-temperature stress.


2021 ◽  
Vol 22 (19) ◽  
pp. 10546
Author(s):  
Yuehan Pang ◽  
Yaqi Hu ◽  
Jinsong Bao

High-temperature stress severely affects rice grain quality. While extensive research has been conducted at the physiological, transcriptional, and protein levels, it is still unknown how protein phosphorylation regulates seed development in high-temperature environments. Here, we explore the impact of high-temperature stress on the phosphoproteome of developing grains from two indica rice varieties, 9311 and Guangluai4 (GLA4), with different starch qualities. A total of 9994 phosphosites from 3216 phosphoproteins were identified in all endosperm samples. We identified several consensus phosphorylation motifs ([sP], [LxRxxs], [Rxxs], [tP]) induced by high-temperature treatment and revealed a core set of protein kinases, splicing factors, and regulatory factors in response to high-temperature stress, especially those involved in starch metabolism. A detailed phosphorylation scenario in the regulation of starch biosynthesis (AGPase, GBSSI, SSIIa, SSIIIa, BEI, BEIIb, ISA1, PUL, PHO1, PTST) in rice endosperm was proposed. Furthermore, the dynamic changes in phosphorylated enzymes related to starch synthesis (SSIIIa-Ser94, BEI-Ser562, BEI-Ser620, BEI-Ser821, BEIIb-Ser685, BEIIb-Ser715) were confirmed by Western blot analysis, which revealed that phosphorylation might play specific roles in amylopectin biosynthesis in response to high-temperature stress. The link between phosphorylation-mediated regulation and starch metabolism will provide new insights into the mechanism underlying grain quality development in response to high-temperature stress.


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Khalil Ahmed Laghari ◽  
Abdul Jabbar Pirzada ◽  
Mahboob Ali Sial ◽  
Muhammad Athar Khan ◽  
Jamal Uddin Mangi

Author(s):  
D-J Kim ◽  
I-G Kim ◽  
J-Y Noh ◽  
H-J Lee ◽  
S-H Park ◽  
...  

Abstract As DRAM technology extends into 12-inch diameter wafer processing, plasma-induced wafer charging is a serious problem in DRAM volume manufacture. There are currently no comprehensive reports on the potential impact of plasma damage on high density DRAM reliability. In this paper, the possible effects of floating potential at the source/drain junction of cell transistor during high-field charge injection are reported, and regarded as high-priority issues to further understand charging damage during the metal pad etching. The degradation of block edge dynamic retention time during high temperature stress, not consistent with typical reliability degradation model, is analyzed. Additionally, in order to meet the satisfactory reliability level in volume manufacture of high density DRAM technology, the paper provides the guidelines with respect to plasma damage. Unlike conventional model as gate antenna effect, the cell junction damage by the exposure of dummy BL pad to plasma, was revealed as root cause.


2020 ◽  
Vol 16 (2) ◽  
pp. 18-23
Author(s):  
K. PRAVALLIKA ◽  
C. ARUNKUMAR ◽  
A. VIJAYKUMAR ◽  
R. BEENA ◽  
V. G. JAYALEKSHMI

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


Sign in / Sign up

Export Citation Format

Share Document