scholarly journals Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0188742 ◽  
Author(s):  
Chunmiao Jiang ◽  
Qingxi J. Shen ◽  
Bo Wang ◽  
Bin He ◽  
Suqin Xiao ◽  
...  
2014 ◽  
Vol 290 (1) ◽  
pp. 151-171 ◽  
Author(s):  
Mingquan Ding ◽  
Jiadong Chen ◽  
Yurong Jiang ◽  
Lifeng Lin ◽  
YueFen Cao ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Min Wang ◽  
Alessandro Vannozzi ◽  
Gang Wang ◽  
Ying-Hai Liang ◽  
Giovanni Battista Tornielli ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1867
Author(s):  
Yan Li ◽  
Xiang Li ◽  
Jiatong Wei ◽  
Kewei Cai ◽  
Hongzhi Zhang ◽  
...  

WRKY transcription factors constitute one of the largest gene families in plants and are involved in many biological processes, including growth and development, physiological metabolism, and the stress response. In earlier studies, the WRKY gene family of proteins has been extensively studied and analyzed in many plant species. However, information on WRKY transcription factors in Acer truncatum has not been reported. In this study, we conducted genome-wide identification and analysis of the WRKY gene family in A. truncatum, 54 WRKY genes were unevenly located on all 13 chromosomes of A. truncatum, the highest number was found in chromosomes 5. Phylogenetic relationships, gene structure, and conserved motif identification were constructed, and the results affirmed 54 AtruWRKY genes were divided into nine subgroup groups. Tissue species analysis of AtruWRKY genes revealed which were differently exhibited upregulation in flower, leaf, root, seed and stem, and the upregulation number were 23, 14, 34, 18, and 8, respectively. In addition, the WRKY genes expression in leaf under cold stress showed that more genes were significantly expressed under 0, 6 and 12 h cold stress. The results of this study provide a new insight the regulatory function of WRKY genes under abiotic and biotic stresses.


2018 ◽  
Vol 41 (1) ◽  
pp. 79-94 ◽  
Author(s):  
Saurabh Gupta ◽  
Vinod Kumar Mishra ◽  
Sunita Kumari ◽  
Raavi ◽  
Ramesh Chand ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148243 ◽  
Author(s):  
Zhi Zou ◽  
Lifu Yang ◽  
Danhua Wang ◽  
Qixing Huang ◽  
Yeyong Mo ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231396 ◽  
Author(s):  
Nannan Zhao ◽  
Meijing He ◽  
Li Li ◽  
Shunli Cui ◽  
Mingyu Hou ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13045
Author(s):  
Yin Tang ◽  
Jingfei Guo ◽  
Tiantao Zhang ◽  
Shuxiong Bai ◽  
Kanglai He ◽  
...  

WRKY transcription factors comprise one of the largest gene families and serve as key regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided into seven subgroups (groups I, IIa–e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional regulation prediction showed that six key WRKY genes contribute to four major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA) biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression levels were highly correlated with predicted target genes, suggesting that these genes have important functions in the response to O. furnacalis. Our results provide a comprehensive understanding of the WRKY gene family based on the new assembly of the maize genome and lay the foundation for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses against O. furnacalis in the field.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongchao Hao ◽  
Shoushen Xu ◽  
Zhongfan lyu ◽  
Hongwei Wang ◽  
Lingrang Kong ◽  
...  

Glutathione S-transferases (GSTs) are ancient proteins encoded by a large gene family in plants, which play multiple roles in plant growth and development. However, there has been little study on the GST genes of common wheat (Triticum aestivum) and its relatives (Triticum durum, Triticum urartu, and Aegilops tauschii), which are four important species of Triticeae. Here, a genome-wide comprehensive analysis of this gene family was performed on the genomes of common wheat and its relatives. A total of 346 GST genes in T. aestivum, 226 in T. durum, 104 in T. urartu, and 105 in Ae. tauschii were identified, and all members were divided into ten classes. Transcriptome analysis was used to identify GST genes that respond to salt stress in common wheat, which revealed that the reaction of GST genes is not sensitive to low and moderate salt concentrations but is sensitive to severe concentrations of the stressor, and the GST genes related to salt stress mainly come from the Tau and Phi classes. Six GST genes which respond to different salt concentrations were selected and validated by a qRT-PCR assay. These findings will not only provide helpful information about the function of GST genes in Triticeae species but also offer insights for the future application of salt stress resistance breeding in common wheat.


Sign in / Sign up

Export Citation Format

Share Document