scholarly journals Changes in lipid metabolism and capillary density of the skeletal muscle following low-intensity exercise training in a rat model of obesity with hyperinsulinemia

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0196895 ◽  
Author(s):  
Naoto Fujita ◽  
Saki Aono ◽  
Kohei Karasaki ◽  
Fumi Sera ◽  
Tomoyuki Kurose ◽  
...  
2015 ◽  
Vol 6 ◽  
Author(s):  
Tiziana Pietrangelo ◽  
Ester S. Di Filippo ◽  
Rosa Mancinelli ◽  
Christian Doria ◽  
Alessio Rotini ◽  
...  

2021 ◽  
Vol 34 (2) ◽  
pp. 226-226
Author(s):  
Li-mei Chen ◽  
Wen-wen Peng ◽  
Gui-qing Xu ◽  
Yue Guo ◽  
Ling-jie Wei ◽  
...  

Abstract Background To investigate the effects of low-intensity exercise on aerobic exercise capacity and autophagy of skeletal muscle in rats after myocardial infarction (MI) and its possible mechanisms. Methods Thirty male Sprague Dawley rats, weighing 180–200 g, were randomly divided into sham, MI, and MI with exercise training (MI + Ex) groups. MI was induced by ligation of the left anterior descending artery. One week after surgery, low-intensity exercise training was carried out on a treadmill 5 days per week for 4 weeks. Results Infarct size of MI and MI + Ex groups was 30.8 ± 5.5% and 27.6 ± 5.0% of left ventricle, respectively (P > 0.05). Heart weight and heart to body weight ratio in the MI group were significantly higher than those in the sham group (P < 0.01), and were lowered by exercise training (P < 0.01). The maximal exercise distance and duration in the MI group were lower than those in the sham group (P < 0.01), but were significantly increased by exercise training (P < 0.05). Autophagosome of the gastrocnemius was not detectable in the sham group, scattered in the MI group but clustered in the MI + Ex group. Microtubule-associated protein light chain 3 (LC3-I/II) and Beclin-1 protein levels in the gastrocnemius were similar between MI and sham groups, but were significantly higher in the MI + Ex group (P < 0.05). Conclusions Low-intensity exercise improves exercise capacity in rats after MI. The effect is associated with enhanced autophagy of the skeletal muscle.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Flávio Pereira ◽  
Roger de Moraes ◽  
Eduardo Tibiriçá ◽  
Antonio C. L. Nóbrega

Interval training (IT), consisting of alternated periods of high and low intensity exercise, has been proposed as a strategy to induce more marked biological adaptations than continuous exercise training (CT). The purpose of this study was to assess the effects of IT and CT with equivalent total energy expenditure on capillary skeletal and cardiac muscles in rats. Wistar rats ran on a treadmill for 30 min per day with no slope (0%), 4 times/week for 13 weeks. CT has constant load of 70% max; IT has cycles of 90% max for 1 min followed by 1 min at 50% max. CT and IT increased endurance and muscle oxidative capacity and attenuated body weight gain to a similar extent (P>0.05). In addition, CT and IT similarly increased functional capillary density of skeletal muscle (CT:30.6±11.7%; IT:28.7±11.9%) and the capillary-to-fiber ratio in skeletal muscle (CT:28.7±14.4%; IT:40.1±17.2%) and in the left ventricle (CT:57.3±53.1%; IT:54.3±40.5%). In conclusion, at equivalent total work volumes, interval exercise training induced similar functional and structural alterations in the microcirculation of skeletal muscle and myocardium in healthy rats compared to continuous exercise training.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tianyi Wang ◽  
Song Huang ◽  
Xiao Han ◽  
Sujuan Liu ◽  
Yanmei Niu ◽  
...  

Objective Obesity is becoming increasingly prevalent and is an important contributor to the worldwide burden of diseases. It is widely accepted that exercise training is beneficial for the prevention and treatment of obesity. However, the underlying mechanism by which exercise training improving skeletal muscle lipid metabolism is still not fully described. Sestrins (Sestrin1-3) are highly conserved stress-inducible protein. Concomitant ablation of Sestrin2 and Sestrin3 has been reported to provoke hepatic mTORC1/S6K1 activation and insulin resistance even without nutritional overload and obesity, implicating that Sestrin2 and Sestrin3 have an important homeostatic function in the control of mammalian glucose and lipid metabolism. Our previous results demonstrated that physical exercise increased Sestrin2 expression in murine skeletal muscle, while the role of Sestrin2 in regulating lipid metabolism remains unknown.  SH2 domain containing inositol 5-phosphatase (SHIP2) acts as a negative regulator of the insulin signaling both in vitro and in vivo. An increased expression of SHIP2 inhibits the insulin-induced Akt activation, glucose uptake, and glycogen synthesis in 3T3-L1 adipocytes, L6 myotubes and tissues of animal models. Alterations of SHIP2 expression and/or enzymatic function appear to have a profound impact on the development of insulin resistance. However, the regulatory function of SHIP2 in lipid metabolism after exercise remains unclear. It has been reported that SHIP2 modulated lipid metabolism through regulating the activity of c-Jun N-terminal kinase (JNK) and Sterol regulatory element-binding protein-1 (SREBP-1). JNK is a subclass of mitogen-activated protein kinase (MAPK) signaling pathway in mammalian cells and plays a crucial role in metabolic changes and inflammation associated with a high-fat diet. Inhibition of JNK reduces lipid deposition and proteins level of fatty acid de novo synthesis in liver cells. It has been reported that Sestrin2 regulated the phosphorylation of JNK, however the underlying mechanism remains unclear. SREBP-1 is important in regulating cholesterol biosynthesis and uptake and fatty acid biosynthesis, and SREBP-1 expression produces two different isoforms, SREBP-1a and SREBP-1c. SREBP-1c is responsible for regulating the genes required for de novo lipogenesis and its expression is regulated by insulin. SREBP-1a regulates genes related to lipid and cholesterol production and its activity is regulated by sterol levels in the cell. Altogether, the purpose of this study was to explore the effect and underlying mechanism of Sestrin2 on lipid accumulation after exercise training. Methods Male wild type and SESN2−/− mice were divided into normal chow (NC) and high-fat diet (HFD) groups to create insulin resistance mice model. After 8 weeks the IR model group was then divided into HFD sedentary control and HFD exercise groups (HE). Mice in HE group underwent 6-week treadmill exercise to reveal the effect of exercise training on lipid metabolism in insulin resistance model induced by HFD. We explored the mechanism through which Sestrin2 regulated lipid metabolism in vitro by supplying palmitate, overexpressing or inhibiting SESNs, SHIP2 and JNK in myotubes. Results We found that 6-week exercise training decreased body weight, BMI and fat mass in wild type and SESN2-/- mice after high-fat diet (HFD) feeding. And exercise training decreased the level of plasma glucose, serum insulin, triglycerides and free fatty acids in wild type but not in Sestrin2-/- mice. Lipid droplet in skeletal muscle was also decreased in wild type but did not in Sestrin2-/- mice. Moreover, exercise training increased the proteins expression involved in fatty acid oxidation and decreased the proteins which related to fatty acid de novo synthesis. The results of oil red staining and the change of proteins related to fatty acid de novo synthesis and beta oxidation in myotubes treated with palmitate, Ad-SESN2 and siRNA-Sestrin2 were consisted with the results in vivo, which suggested that Sestrin2 was a key regulator in lipid metabolism. Exercise training increased Sestrin2 expression and reversed up-regulation of SHIP2 and pJNK induced by HFD in wild type mice but not in Sestrin2-/- mice. In parallel, overexpression of Sestrin2 decreased the level of SHIP2 and pJNK induced by palmitate while Sestrin2 knock down by siRNA-Sestrin2 treatment did not change the expression of SHIP2 and pJNK, which suggested that Sestrin2 modulated SHIP2 and JNK in the state of abnormal lipid metabolism. Inhibition of SHIP2 reduced the activity of JNK, increased lipid accumulation and the proteins of fatty acid synthesis after palmitate treatment and over expression of Sestrin2, which suggest that Sestrin2 modulated lipid metabolism through SHIP2/JNK pathway. Conclusions Sestrin2 plays an important role in improving lipid metabolism after exercise training, and Sestrin2 regulates lipid metabolism by SHIP2-JNK pathway in skeletal muscle.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S85-S86
Author(s):  
Bo-Kyung Son ◽  
Masato Eto ◽  
Miya Oura ◽  
Masahiro Akishita

Abstract Background: Physical exercise is well documented to induce muscle size, strength, and energy metabolism. Although the contribution of systemic or local androgen in exercise-adapted muscle hypertrophy has been suggested, less is known about the molecular pathway of androgen in response to exercise. In the present study, we examined roles of androgen/androgen receptor (AR) after exercise, especially for the suppression of myostatin, a potent negative regulator of muscle mass. Methods and Results: To examine the effects of exercise, we employed low-intensity exercise in mice and electric pulse stimulation (EPS) in C2C12 myotubes. Both mRNA and protein levels of AR significantly increased in skeletal muscle of low-intensity exercised mice and C2C12 myotubes exposed to EPS. Production of testosterone and DHT from EPS-treated C2C12 myotubes was markedly increased. Of interest, we found that myostatin was clearly inhibited by EPS, and its inhibition was significantly abrogated by flutamide, a specific antagonist of AR. Furthermore, IL-6 and phospho-STAT3 (pSTAT3) expression, the downstream pathway of myostatin, were decreased by EPS and this was also reversed by flutamide. Similar downregulation of myostatin and IL-6 was seen in skeletal muscle of low-intensity exercised mice. Conclusion: Muscle AR expression and androgen production were increased by exercise and EPS treatment. As a mechanistical insight, it is suggested that AR inhibited myostatin expression transcriptionally, which downregulates IL-6/pSTAT3 pathway and thus contributes to the prevention of muscle degradation.


2015 ◽  
Vol 3 (1) ◽  
pp. e12232 ◽  
Author(s):  
Yu-Han Hung ◽  
Melissa A. Linden ◽  
Alicia Gordon ◽  
R. Scott Rector ◽  
Kimberly K. Buhman

Sign in / Sign up

Export Citation Format

Share Document