scholarly journals Identification and similarity analysis of aroma substances in main types of Fenghuang Dancong tea

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244224
Author(s):  
Zhangwei Li ◽  
Juhong Wang

Fenghuang Dancong tea covers the oolong tea category and is widely acknowledged for its unique floral and honey flavor. In order to characterize the volatile components in nine different aroma types of Fenghuang Dancong tea, the Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC- MS) were employed. In addition, the similarity analysis and cluster analysis (CA) were performed to compare the aroma characteristics and establish the correlation between the nine types of teas. The principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) method were employed to determine the volatile components with a high contribution to the overall aroma of each type of tea. The results presented a total of 122 volatile aroma components including 24 kinds of alcohol, 23 kinds of esters, 15 kinds of olefins, 12 kinds of aldehydes, 12 kinds of ketones, 13 kinds of alkanes and 23 kinds of other components from the nine types of Fenghuang Dancong tea. Of these volatile aroma components, 22 types were common with linalool, dehydrolinalool, linalool oxide I, linalool oxide II, etc. The similarity of the nine types of Fenghuang Dancong tea was found between 46.79% and 95.94%. The CA indicated that the nine types of Fenghuang Dancong tea could be clustered into four categories when the ordinate distance reached to 10. The PCA demonstrated that decane, octadecane, 2,2,4,6,6-pentamethylheptane, dehydrolinalool, geraniol and nerol were the important aroma components to Fenghuang Dancong Tea. OPLS-DA proved that 2,2,4,6,6-pentamethylheptane, dehydrolinalool, phenylacetaldehyde, nerolidol, linalool oxide I and hexanal were the key differential compounds between the various types of tea samples. This study provides a theoretical basis for characterizing the volatile aroma components in the main types of Fenghuang Dancong tea as well as the similarity and correlation between various types of Fenghuang Dancong tea.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2604
Author(s):  
Zhulin Wang ◽  
Rong Dou ◽  
Ruili Yang ◽  
Kun Cai ◽  
Congfa Li ◽  
...  

The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6219
Author(s):  
Lixia Sheng ◽  
Yinan Ni ◽  
Jianwen Wang ◽  
Yue Chen ◽  
Hongsheng Gao

The unique fruity aroma of strawberries, a popular fruit of high economic value, is closely related to all the volatile organic compounds (VOCs) contained within them. Despite extensive studies on the identification of VOCs in strawberries, systematic studies on fruit-aroma-related VOCs are few, resulting in a lack of effective standards for accurately distinguishing aroma types. In the present study, solid-phase micro extraction and gas chromatography–mass spectrometry were used to analyze and identify VOCs in the ripe fruit of each of the 16 strawberry varieties at home and abroad and to explore their characteristic aroma components and the classification of such varieties by aroma type. The results suggested remarkable variations in the types and contents of VOCs in different strawberry varieties, of which esters were dominant. The principal volatile components, consisting of four esters, three alcohols, one aldehyde, and one ketone, in 16 strawberry varieties were detected based on the absolute and relative contents of VOCs in the fruit. The characteristic aroma components in strawberries, containing nine esters, six aldehydes, and one alcohol, were determined based on the aroma values of different VOCs, and the characteristic aroma components were divided into five types further based on aroma descriptions. Sixteen strawberry varieties were finally divided into four aroma types, namely, peachy, pineapple, fruity, and floral, based on the contributions of different types. The results provided a basis and standard for classifying strawberries by aroma type, studying the hereditary regularity of the fruity aroma of strawberries, and improving aroma quality.


2016 ◽  
Vol 12 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Kandhasamy Sowndhararajan ◽  
Nyuk Ling Chin ◽  
Yus Aniza Yusof ◽  
Lee Ling Lai ◽  
Wan Aida Wan Mustapha

Abstract The color and aroma properties of Pandanus amaryllifolius Roxb. leaves (pandan) were studied by mechanical extraction using normal and turbo blade blenders under different blending times (60–180 s). The extracted juice was freeze-dried into powders and its aroma components were measured in a solid-phase microextraction using gas chromatography/mass spectrometry (SPME-GC/MS) analysis. The turbo blade blender provided maximum color pigment of greenness and yellowness at blending time of 90 s as compared to the normal blender that required 180 s. In GC-MS analysis, the major component, 2-acetyl-1-pyrroline, was found to be one time higher in the freeze-dried pandan juice samples obtained from turbo blade blender than normal blender. Other components including the cis-3-hexanal, 2-methylene-4-pentenenitrile and 1,2,4-trimethylbenzene were also detected in the samples. In conclusion, the turbo blade blender is more effective than normal laboratory blender in terms of color extraction, particle size reduction and the aroma retention.


Author(s):  
Kosuke Shimizu ◽  
Tetsuya Matsukawa ◽  
Risa Kanematsu ◽  
Kimihisa Itoh ◽  
Shinya Kanzaki ◽  
...  

Abstract Headspace solid-phase microextraction combined with GC/MS (HS-SPME-GC/MS) is one of the strongest tools for comprehensive analysis of volatile compounds and has been used to analyze aromatic components of mango and investigate its varietal characteristics. In this study, profiling of aroma compounds in 17 mango cultivars, grown in the same green house to exclude the effect of environmental factors, was conducted and the patterns were subjected to principal component analysis (PCA) to identify the relationship between the aroma components and cultivars. Fifty-nine different volatile constituents were detected from the blends of these 17 mango cultivars. The cultivars were divided into four clusters using PCA based on the volatile components determined in the study. Aiko was found to mainly contain δ-3-carene and showed a composition more similar to its pollen parent, Irwin, than to its seed parent, Chiin Hwang No. 1.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mingxiu Long ◽  
Min Liu ◽  
Yongfu Li ◽  
Zhuxi Tian ◽  
Yangbo He ◽  
...  

Abstract Marinated chicken wings is one of the popular marinated meat products in China. Here, electronic nose (e-nose) and solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) were used to detect volatile components of four different treatment marinated chicken wings (neither irradiated nor added phytic acid and tea polyphenols, A1; added phytic acid and tea polyphenols but no irradiated, A2; irradiated with 4 kGy irradiation but not added phytic acid and tea polyphenols, A3; irradiated with 4 kGy irradiation and added phytic acid and tea polyphenols, A4). Then odor activity value (OAV) and principal component analysis (PCA) were utilized to analyze their key flavor compounds. E-nose analysis found that antioxidant has a great impact on the odor of the marinated chicken wings, while the irradiation treatment has little effect on it. Besides, the irradiation treatment can reduce the unpleasant odor caused by antioxidants in certain. Through SPME-GC-MS, 101 volatile compounds were identified in four groups. After analysis, the antioxidants can inhibit the production of some volatile compounds, while irradiation treatment will relieve this phenomenon. This result is consistent with the e-nose. Following OAV, PCA analysis and sensory evaluation further verified the above conclusions.


2021 ◽  
Vol 20 (5) ◽  
pp. 85-96
Author(s):  
Nevzat Artik ◽  
Selen Akan ◽  
Yeşim Okay ◽  
Nurefşan Durmaz ◽  
A. İlhami Köksal

Hazelnut is a very important nutrient in terms of human health. It is widely consumed as natural and roasted. Aromatic components could be used as marker for export criteria in hazelnut. Thus, this study aimed preliminary to compare the aroma profile of some hazelnut varieties and to determine the effect of roasting on aroma component in natural hazelnuts. Hazelnut varieties (18 Turkish and 2 foreign varieties) were obtained and then roasted at 135°C for 30 min. The volatile aroma components of hazelnuts were characterized via solid phase microextraction-gas chromatography-mass spectrometry (SPME/GC-MS). A total of 20 and 29 aroma compounds were detected by SPME/GC-MS in natural and roasted hazelnuts, respectively. Concerning natural hazelnut samples, the highest values among the Turkish and foreign varieties were obtained from nonanal in ‛Kalınkara’, ‛Kan’ and ‛Negret-N9’, which are mainly characterized by citrus, rosy, fatty flavor. In roasted samples, 2(3H)-furanone was determined in highest level in ‛Cavcava’, ‛Mincane’ and ‛Negret-N9’ and the flavor attributes of these varieties were oily-nut-like. In particular, Turkish hazelnut varieties such as ‛Acı’ and ‛Kalınkara’ could be promising in terms of the highest amount of aromatic components in roasted hazelnuts.


Author(s):  
Thanh Hai Phan Thi ◽  
To Quynh Cung Thi ◽  
◽  

Six types of oolong tea products from four different regions were investigated. Their volatile components were obtained by Solid Phase Microextraction (SPME) method and analyzed by GC – MS. Results showed that hexanal (ranged from 1.08-1.52%), 6-methyl-5-hepten-2-one (0.55-4.30%), (Z)-linalool oxide (5.44-17.95%), (E)-linalool oxide (4.86-12.13%), linalool (1.23-8.26%), epoxylinalool (0.80-1.16%) and methyl salicylate (0.70-2.51%) could be identified as the major compounds of all six tea products. These products were also classified into 3 groups based on their volatile compositions by Principal Component Analysis (PCA) method. The consumer preference analysis (n = 84) showed a significant difference in odor preference levels of these products.  


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2516
Author(s):  
Sang-Hee Lee ◽  
Sunmin Lee ◽  
Seung-Hwa Lee ◽  
Hae-Jin Kim ◽  
Digar Singh ◽  
...  

Though varying metabolomes are believed to influence distinctive characteristics of different soy foods, an in-depth, comprehensive analysis of both soluble and volatile metabolites is largely unreported. The metabolite profiles of different soy products, including cheonggukjang, meju, doenjang, and raw soybean, were characterized using LC-MS (liquid chromatography–mass spectrometry), GC-MS (gas chromatography–mass spectrometry), and headspace solid-phase microextraction (HS-SPME) GC-MS. Principal component analysis (PCA) showed that the datasets for the cheonggukjang, meju, and doenjang extracts were distinguished from the non-fermented soybean across PC1, while those for cheonggukjang and doenjang were separated across PC2. Volatile organic compound (VOC) profiles were clearly distinct among doenjang and soybean, cheonggukjang, and meju samples. Notably, the relative contents of the isoflavone glycosides and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) conjugated soyasaponins were higher in soybean and cheonggukjang, compared to doenjang, while the isoflavone aglycones, non-DDMP conjugated soyasaponins, and amino acids were significantly higher in doenjang. Most VOCs, including the sulfur containing compounds aldehydes, esters, and furans, were relatively abundant in doenjang. However, pyrazines, 3-methylbutanoic acid, maltol, and methoxyphenol were higher in cheonggukjang, which contributed to the characteristic aroma of soy foods. We believe that this study provides the fundamental insights on soy food metabolomes, which determine their nutritional, functional, organoleptic, and aroma characteristics.


2020 ◽  
Author(s):  
Shengying Hu ◽  
Hongbo Ren ◽  
Song Yong ◽  
Siyuan Gao ◽  
Li Meng

Abstract Background In recent years, high-quality rice adulteration has become a serious problem. It is essential to prevent false origin labels and dishonest transactions. However, there is still a lack of rapid identification methods for discriminating rice from different sources. In this study, we developed a method to profile volatile organic compounds (VOCs) using headspace solid phase microextraction (HS-SPME) combined with gas chromatography mass spectrometry (GC-MS). In addition, the identification efficiency of the biomarkers was determined using several multivariate analysis methods. Results Based on the t-test, fold changes and volcano plots, eight typical biomarkers were used based their differential levels. Among them, 2-acetyl-1-pyrroline (2-AP) is the most important source of aroma in rice flavor. Unsupervised analyses, including principal component analysis (PCA) and Cluster analysis, demonstrated the potential for geographic classification of rice between Wuchang and other regions. In addition, partial least squares discriminant analysis (PLS-DA) yielded a goodness of fit of 0.900, a goodness of prediction of 0.853, and a probability of substitution test of 0.012. Random forest (RF) algorithm further strengthened the discriminating ability of volatile compounds. Conclusion In short, the current method can quickly distinguish rice from Wu Chang and other regions, and the research method can facilitate controlling the authenticity and quality of rice.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5244
Author(s):  
Wensu Ji ◽  
Xiaoyue Ji

Pinaceae plants are widely distributed in the world, and the resources of pine leaves are abundant. In the extensive literature concerning Pinus species, there is much data on the composition and the content of essential oil of leaves. Still, a detailed comparative analysis of volatile terpenes and terpenoids between different species is missing. In this paper, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was used to determine the volatile terpenes and terpenoids of typical Pinus species in China. A total of 46 volatile terpenes and terpenoids were identified, and 12 common compounds were found, which exhibited a great diversity in the leaves of Pinus species. According to the structures and properties of the compounds, all those compounds can be classified into four categories, namely monoterpenes, oxygenated terpenes, terpene esters, and sesquiterpenes. The results of principal component analysis and cluster analysis showed that the leaves of the six Pinus species could be divided into two groups. The species and contents of volatile terpenes and terpenoids in the leaves were quite different. The results not only provide a reference for the utilization of pine leaves resource, but also bring a broader vision on the biodiversity.


Sign in / Sign up

Export Citation Format

Share Document