scholarly journals Changes in Phenols, Polysaccharides and Volatile Profiles of Noni (Morinda citrifolia L.) Juice during Fermentation

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2604
Author(s):  
Zhulin Wang ◽  
Rong Dou ◽  
Ruili Yang ◽  
Kun Cai ◽  
Congfa Li ◽  
...  

The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244224
Author(s):  
Zhangwei Li ◽  
Juhong Wang

Fenghuang Dancong tea covers the oolong tea category and is widely acknowledged for its unique floral and honey flavor. In order to characterize the volatile components in nine different aroma types of Fenghuang Dancong tea, the Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC- MS) were employed. In addition, the similarity analysis and cluster analysis (CA) were performed to compare the aroma characteristics and establish the correlation between the nine types of teas. The principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) method were employed to determine the volatile components with a high contribution to the overall aroma of each type of tea. The results presented a total of 122 volatile aroma components including 24 kinds of alcohol, 23 kinds of esters, 15 kinds of olefins, 12 kinds of aldehydes, 12 kinds of ketones, 13 kinds of alkanes and 23 kinds of other components from the nine types of Fenghuang Dancong tea. Of these volatile aroma components, 22 types were common with linalool, dehydrolinalool, linalool oxide I, linalool oxide II, etc. The similarity of the nine types of Fenghuang Dancong tea was found between 46.79% and 95.94%. The CA indicated that the nine types of Fenghuang Dancong tea could be clustered into four categories when the ordinate distance reached to 10. The PCA demonstrated that decane, octadecane, 2,2,4,6,6-pentamethylheptane, dehydrolinalool, geraniol and nerol were the important aroma components to Fenghuang Dancong Tea. OPLS-DA proved that 2,2,4,6,6-pentamethylheptane, dehydrolinalool, phenylacetaldehyde, nerolidol, linalool oxide I and hexanal were the key differential compounds between the various types of tea samples. This study provides a theoretical basis for characterizing the volatile aroma components in the main types of Fenghuang Dancong tea as well as the similarity and correlation between various types of Fenghuang Dancong tea.


2016 ◽  
Vol 12 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Kandhasamy Sowndhararajan ◽  
Nyuk Ling Chin ◽  
Yus Aniza Yusof ◽  
Lee Ling Lai ◽  
Wan Aida Wan Mustapha

Abstract The color and aroma properties of Pandanus amaryllifolius Roxb. leaves (pandan) were studied by mechanical extraction using normal and turbo blade blenders under different blending times (60–180 s). The extracted juice was freeze-dried into powders and its aroma components were measured in a solid-phase microextraction using gas chromatography/mass spectrometry (SPME-GC/MS) analysis. The turbo blade blender provided maximum color pigment of greenness and yellowness at blending time of 90 s as compared to the normal blender that required 180 s. In GC-MS analysis, the major component, 2-acetyl-1-pyrroline, was found to be one time higher in the freeze-dried pandan juice samples obtained from turbo blade blender than normal blender. Other components including the cis-3-hexanal, 2-methylene-4-pentenenitrile and 1,2,4-trimethylbenzene were also detected in the samples. In conclusion, the turbo blade blender is more effective than normal laboratory blender in terms of color extraction, particle size reduction and the aroma retention.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Dong Han ◽  
Chun-Hui Zhang ◽  
Marie-Laure Fauconnier

The study aimed to investigate the influence of seasoning formulations (SP1: water; SP2: water and salt; SP3: water, salt and spices; SP4: water, salt, spices and soy sauce; SP5: water, salt, spices, soy sauce, sugar; SP6: water, salt, spices, soy sauce, sugar and cooking wine) on the volatile profiles and sensory evaluation of stewed pork. Volatile compounds were extracted using solid phase microextraction (SPME), then analysed by gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and two-dimensional gas chromatographic combined with time-of-fight mass spectrometry (GC × GC-TOFMS). The results revealed that the most abundant volatile compounds, especially aldehydes, were presented in the stewed pork using SP1 and SP2. This indicated that the stewed pork with water and salt could promote lipid oxidation and amino acid degradation. As revealed by principal component analysis (PCA), the stewed pork samples with SP3 were located on the opposite side of that with SP4, SP5, and SP6 in the first and third principal component (PC1-PC3), which indicated that the overall flavour formed by adding spices was significantly different from that of adding soy sauce, sugar, and cooking wine. Sensory evaluation showed that stronger spicy, caramel, and soy sauce odour were present in samples SP3, SP4, SP5, and SP6. This study has indicated that the addition of food seasoning had a positive effect on flavour profiles of stewed pork, particularly for salt and spices.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1287
Author(s):  
Dimitra Tagkouli ◽  
Georgios Bekiaris ◽  
Stella Pantazi ◽  
Maria Eleni Anastasopoulou ◽  
Georgios Koutrotsios ◽  
...  

The influence of genetic (species, strain) and environmental (substrate) factors on the volatile profiles of eight strains of Pleurotus eryngii and P. ostreatus mushrooms cultivated on wheat straw or substrates enriched with winery or olive oil by products was investigated by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Selected samples were additionally roasted. More than 50 compounds were determined in fresh mushroom samples, with P. ostreatus presenting higher concentrations but a lower number of volatile compounds compared to P. eryngii. Roasting resulted in partial elimination of volatiles and the formation of pyrazines, Strecker aldehydes and sulfur compounds. Principal component analysis on the data obtained succeeded to discriminate among raw and cooked mushrooms as well as among Pleurotus species and strains, but not among different cultivation substrates. Ketones, alcohols and toluene were mainly responsible for discriminating among P. ostreatus strains while aldehydes and fatty acid methyl esters contributed more at separating P. eryngii strains.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2516
Author(s):  
Sang-Hee Lee ◽  
Sunmin Lee ◽  
Seung-Hwa Lee ◽  
Hae-Jin Kim ◽  
Digar Singh ◽  
...  

Though varying metabolomes are believed to influence distinctive characteristics of different soy foods, an in-depth, comprehensive analysis of both soluble and volatile metabolites is largely unreported. The metabolite profiles of different soy products, including cheonggukjang, meju, doenjang, and raw soybean, were characterized using LC-MS (liquid chromatography–mass spectrometry), GC-MS (gas chromatography–mass spectrometry), and headspace solid-phase microextraction (HS-SPME) GC-MS. Principal component analysis (PCA) showed that the datasets for the cheonggukjang, meju, and doenjang extracts were distinguished from the non-fermented soybean across PC1, while those for cheonggukjang and doenjang were separated across PC2. Volatile organic compound (VOC) profiles were clearly distinct among doenjang and soybean, cheonggukjang, and meju samples. Notably, the relative contents of the isoflavone glycosides and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) conjugated soyasaponins were higher in soybean and cheonggukjang, compared to doenjang, while the isoflavone aglycones, non-DDMP conjugated soyasaponins, and amino acids were significantly higher in doenjang. Most VOCs, including the sulfur containing compounds aldehydes, esters, and furans, were relatively abundant in doenjang. However, pyrazines, 3-methylbutanoic acid, maltol, and methoxyphenol were higher in cheonggukjang, which contributed to the characteristic aroma of soy foods. We believe that this study provides the fundamental insights on soy food metabolomes, which determine their nutritional, functional, organoleptic, and aroma characteristics.


2021 ◽  
Vol 11 (13) ◽  
pp. 5855
Author(s):  
Samantha Reale ◽  
Valter Di Cecco ◽  
Francesca Di Donato ◽  
Luciano Di Martino ◽  
Aurelio Manzi ◽  
...  

Celery (Apium graveolens L.) is a vegetable belonging to the Apiaceae family that is widely used for its distinct flavor and contains a variety of bioactive metabolites with healthy properties. Some celery ecotypes cultivated in specific territories of Italy have recently attracted the attention of consumers and scientists because of their peculiar sensorial and nutritional properties. In this work, the volatile profiles of white celery “Sedano Bianco di Sperlonga” Protected Geographical Indication (PGI) ecotype, black celery “Sedano Nero di Torricella Peligna” and wild-type celery were investigated using head-space solid-phase microextraction combined with gas-chromatography/mass spectrometry (HS-SPME/GC-MS) and compared to that of the common ribbed celery. Exploratory multivariate statistical analyses were conducted using principal component analysis (PCA) on HS-SPME/GC-MS patterns, separately collected from celery leaves and petioles, to assess similarity/dissimilarity in the flavor composition of the investigated varieties. PCA revealed a clear differentiation of wild-type celery from the cultivated varieties. Among the cultivated varieties, black celery “Sedano Nero di Torricella Peligna” exhibited a significantly different composition in volatile profile in both leaves and petioles compared to the white celery and the prevalent commercial variety. The chemical components of aroma, potentially useful for the classification of celery according to the variety/origin, were identified.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Xiaoyu Yin ◽  
Qian Chen ◽  
Qian Liu ◽  
Yan Wang ◽  
Baohua Kong

Smoking is mainly used to impart desirable flavour, colour and texture to the products. Various food smoking methods can be divided into traditional and industrial methods. The influences of three different smoking methods, including traditional smouldering smoke (TSS), industrial smouldering smoke (ISS) and industrial liquid smoke (ILS), on quality characteristics, sensory attributes and flavour profiles of Harbin red sausages were studied. The smoking methods had significant effects on the moisture content (55.74–61.72 g/100 g), L*-value (53.85–57.61), a*-value (11.97–13.15), b*-value (12.19–12.92), hardness (24.25–29.17 N) and chewiness (13.42–17.32). A total of 86 volatile compounds were identified by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Among them, phenolic compounds were the most abundant compounds in the all sausages. Compared with sausages smoked with smouldering smoke, the ILS sausages showed the highest content of volatile compounds, especially phenols, alcohols, aldehydes and ketones. Principal component analysis showed that the sausages smoked with different methods had a good separation based on the quality characteristics and GC × GC-qMS data. These results will facilitate optimising the smoking methods in the industrial production of smoked meat products.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 391
Author(s):  
Xitong Fei ◽  
Yichen Qi ◽  
Yu Lei ◽  
Shujie Wang ◽  
Haichao Hu ◽  
...  

Green prickly ash (Zanthoxylum armatum) and red prickly ash (Zanthoxylum bungeanum) fruit have unique flavor and aroma characteristics that affect consumers’ purchasing preferences. However, differences in aroma components and relevant biosynthesis genes have not been systematically investigated in green and red prickly ash. Here, through the analysis of differentially expressed genes (DEGs), differentially abundant metabolites, and terpenoid biosynthetic pathways, we characterize the different aroma components of green and red prickly ash fruits and identify key genes in the terpenoid biosynthetic pathway. Gas chromatography-mass spectrometry (GC-MS) was used to identify 41 terpenoids from green prickly ash and 61 terpenoids from red prickly ash. Piperitone was the most abundant terpenoid in green prickly ash fruit, whereas limonene was most abundant in red prickly ash. Intergroup correlation analysis and redundancy analysis showed that HDS2, MVK2, and MVD are key genes for terpenoid synthesis in green prickly ash, whereas FDPS2 and FDPS3 play an important role in the terpenoid synthesis of red prickly ash. In summary, differences in the composition and content of terpenoids are the main factors that cause differences in the aromas of green and red prickly ash, and these differences reflect contrasting expression patterns of terpenoid synthesis genes.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 192
Author(s):  
Pengrui Wang ◽  
Jiapeng Chen ◽  
Lujing Chen ◽  
Li Shi ◽  
Hongbing Liu

Plant volatile organic compounds (VOCs) represent a relatively wide class of secondary metabolites. The VOC profiles of seven seaweeds (Grateloupia filicina, Polysiphonia senticulosa, Callithamnion corymbosum, Sargassum thunbergii, Dictyota dichotoma, Enteromorpha prolifera and Ulva lactuca) from the Yellow Sea of China were investigated using multifiber headspace solid phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC–MS), among them, the VOCs of three red algae Grateloupia filicina, Polysiphonia senticulosa, and Callithamnion corymbosum were first reported. Principal component analysis (PCA) was used to disclose characteristic categories and molecules of VOCs and network pharmacology was performed to predict potential biomedical utilization of candidate seaweeds. Aldehyde was found to be the most abundant VOC category in the present study and (E)-β-ionone was the only compound found to exist in all seven seaweeds. The chemical diversity of aldehydes in E. prolifera suggest its potential application in chemotaxonomy and hinted that divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is more suitable for aldehyde extraction. VOCs in D. dichotoma were characterized as sesquiterpenes and diterpenes and the most relevant pharmacological pathway was the neuroactive ligand–receptor interaction pathway, which suggests that D. dichotoma may have certain preventive and therapeutic values in cancer, especially in lung cancer, in addition to neuropsychiatric diseases.


Sign in / Sign up

Export Citation Format

Share Document