scholarly journals Non-destructive Analysis of Volatile Compounds for Geographical Identification of Rice

2020 ◽  
Author(s):  
Shengying Hu ◽  
Hongbo Ren ◽  
Song Yong ◽  
Siyuan Gao ◽  
Li Meng

Abstract Background In recent years, high-quality rice adulteration has become a serious problem. It is essential to prevent false origin labels and dishonest transactions. However, there is still a lack of rapid identification methods for discriminating rice from different sources. In this study, we developed a method to profile volatile organic compounds (VOCs) using headspace solid phase microextraction (HS-SPME) combined with gas chromatography mass spectrometry (GC-MS). In addition, the identification efficiency of the biomarkers was determined using several multivariate analysis methods. Results Based on the t-test, fold changes and volcano plots, eight typical biomarkers were used based their differential levels. Among them, 2-acetyl-1-pyrroline (2-AP) is the most important source of aroma in rice flavor. Unsupervised analyses, including principal component analysis (PCA) and Cluster analysis, demonstrated the potential for geographic classification of rice between Wuchang and other regions. In addition, partial least squares discriminant analysis (PLS-DA) yielded a goodness of fit of 0.900, a goodness of prediction of 0.853, and a probability of substitution test of 0.012. Random forest (RF) algorithm further strengthened the discriminating ability of volatile compounds. Conclusion In short, the current method can quickly distinguish rice from Wu Chang and other regions, and the research method can facilitate controlling the authenticity and quality of rice.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Xiaoyu Yin ◽  
Qian Chen ◽  
Qian Liu ◽  
Yan Wang ◽  
Baohua Kong

Smoking is mainly used to impart desirable flavour, colour and texture to the products. Various food smoking methods can be divided into traditional and industrial methods. The influences of three different smoking methods, including traditional smouldering smoke (TSS), industrial smouldering smoke (ISS) and industrial liquid smoke (ILS), on quality characteristics, sensory attributes and flavour profiles of Harbin red sausages were studied. The smoking methods had significant effects on the moisture content (55.74–61.72 g/100 g), L*-value (53.85–57.61), a*-value (11.97–13.15), b*-value (12.19–12.92), hardness (24.25–29.17 N) and chewiness (13.42–17.32). A total of 86 volatile compounds were identified by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Among them, phenolic compounds were the most abundant compounds in the all sausages. Compared with sausages smoked with smouldering smoke, the ILS sausages showed the highest content of volatile compounds, especially phenols, alcohols, aldehydes and ketones. Principal component analysis showed that the sausages smoked with different methods had a good separation based on the quality characteristics and GC × GC-qMS data. These results will facilitate optimising the smoking methods in the industrial production of smoked meat products.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 536 ◽  
Author(s):  
Somchai Rice ◽  
Devin Maurer ◽  
Anne Fennell ◽  
Murlidhar Dharmadhikari ◽  
Jacek Koziel

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Dong Han ◽  
Chun-Hui Zhang ◽  
Marie-Laure Fauconnier

The study aimed to investigate the influence of seasoning formulations (SP1: water; SP2: water and salt; SP3: water, salt and spices; SP4: water, salt, spices and soy sauce; SP5: water, salt, spices, soy sauce, sugar; SP6: water, salt, spices, soy sauce, sugar and cooking wine) on the volatile profiles and sensory evaluation of stewed pork. Volatile compounds were extracted using solid phase microextraction (SPME), then analysed by gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and two-dimensional gas chromatographic combined with time-of-fight mass spectrometry (GC × GC-TOFMS). The results revealed that the most abundant volatile compounds, especially aldehydes, were presented in the stewed pork using SP1 and SP2. This indicated that the stewed pork with water and salt could promote lipid oxidation and amino acid degradation. As revealed by principal component analysis (PCA), the stewed pork samples with SP3 were located on the opposite side of that with SP4, SP5, and SP6 in the first and third principal component (PC1-PC3), which indicated that the overall flavour formed by adding spices was significantly different from that of adding soy sauce, sugar, and cooking wine. Sensory evaluation showed that stronger spicy, caramel, and soy sauce odour were present in samples SP3, SP4, SP5, and SP6. This study has indicated that the addition of food seasoning had a positive effect on flavour profiles of stewed pork, particularly for salt and spices.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mingxiu Long ◽  
Min Liu ◽  
Yongfu Li ◽  
Zhuxi Tian ◽  
Yangbo He ◽  
...  

Abstract Marinated chicken wings is one of the popular marinated meat products in China. Here, electronic nose (e-nose) and solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) were used to detect volatile components of four different treatment marinated chicken wings (neither irradiated nor added phytic acid and tea polyphenols, A1; added phytic acid and tea polyphenols but no irradiated, A2; irradiated with 4 kGy irradiation but not added phytic acid and tea polyphenols, A3; irradiated with 4 kGy irradiation and added phytic acid and tea polyphenols, A4). Then odor activity value (OAV) and principal component analysis (PCA) were utilized to analyze their key flavor compounds. E-nose analysis found that antioxidant has a great impact on the odor of the marinated chicken wings, while the irradiation treatment has little effect on it. Besides, the irradiation treatment can reduce the unpleasant odor caused by antioxidants in certain. Through SPME-GC-MS, 101 volatile compounds were identified in four groups. After analysis, the antioxidants can inhibit the production of some volatile compounds, while irradiation treatment will relieve this phenomenon. This result is consistent with the e-nose. Following OAV, PCA analysis and sensory evaluation further verified the above conclusions.


2014 ◽  
Vol 10 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Hua-Feng Yang ◽  
Song-Lei Wang ◽  
Shu-Juan Yu ◽  
Xin-An Zeng ◽  
Da Wen Sun

Abstract The volatile composition of six Chinese sugarcane varieties has been analyzed by headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography-mass spectrometry (GC-MS). A total of 40 volatile compounds were identified by the optimized HS-SPME procedure. It was found that the sugarcane juice from Daheixiong variety contained the highest amount of volatile compounds (108.48 mg/L), followed by Tai 22 (90.13 mg/L), 94128 (87.19 mg/L), Gui 00122 (80.16 mg/L), Yue 00236 (79.43 mg/L) and Taiyou (22.54 mg/L). Ethyl alcohol, limonene, hexanol, (s)-2-heptanol and acetic acid were the most abundant compounds present in sugarcane juice. Interestingly, these compounds were also selected by principal component analysis (PCA) to discriminate the sugarcane juices in terms of their varieties. Overall, the identification of aromatic compounds in sugarcane juice could provide useful information for determining sugarcane varieties and be used as a reference for choosing the suitable sugarcane variety as raw material for producing other product, like rums.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1051
Author(s):  
Shunbo Yang ◽  
Nini Hao ◽  
Zhipeng Meng ◽  
Yingjuan Li ◽  
Zhengyang Zhao

Aroma is an important quality indicator for apples and has a great influence on the overall flavour and consumer acceptance. However, the information of the aroma volatile compounds in apple peels is largely unknown. In this study, evaluation of volatile compounds in peels of 40 apple cultivars was carried out using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). A total of 78 volatile compounds were identified, including 47 esters, 12 aldehydes, 5 alcohols, 3 ketones, 1 acid and 10 others. Eight volatile compounds were common in all apple cultivars. Cultivar Changfu No. 2 contained the highest number of volatile compounds (47), while Qinyue contained the least (20). Honey Crisps had the highest volatile content, at 27,813.56 ± 2310.07 µg/kg FW, while Huashuo had the lowest volatile content, at 2041.27 ± 120.36 µg/kg FW. Principal component analysis (PCA) clustered the 40 apple cultivars into five groups. Aroma is cultivar-specific, volatile compounds of hexyl butyrate, hexyl 2-methylbutyrate and hexyl hexanoate, together with hexanal, (E)-2-hexenal, 1-hexanol, estragole and α-farnesene could be proposed for apple cultivar classification in the future.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1183 ◽  
Author(s):  
Sang Lee ◽  
Young Hwang ◽  
Moon Kim ◽  
Myung Chung ◽  
Young-Suk Kim

The production of rice-based beverages fermented by lactic acid bacteria (LAB) can increase the consumption of rice in the form of a dairy replacement. This study investigated volatile and nonvolatile components in rice fermented by 12 different LABs. Volatile compounds of fermented rice samples were analyzed using gas chromatography-mass spectrometry (GC-MS) combined with solid-phase microextraction (SPME), while nonvolatile compounds were determined using gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) after derivatization. The 47 identified volatile compounds included acids, aldehydes, esters, furan derivatives, ketones, alcohols, benzene and benzene derivatives, hydrocarbons, and terpenes, while the 37 identified nonvolatile components included amino acids, organic acids, and carbohydrates. The profiles of volatile and nonvolatile components generally differed significantly between obligatorily homofermentative/facultatively heterofermentative LAB and obligatorily heterofermentative LAB. The rice sample fermented by Lactobacillus sakei (RTCL16) was clearly differentiated from the other samples on principal component analysis (PCA) plots. The results of PCA revealed that the rice samples fermented by LABs could be distinguished according to microbial strains.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6027
Author(s):  
Heting Qi ◽  
Shenghua Ding ◽  
Zhaoping Pan ◽  
Xiang Li ◽  
Fuhua Fu

Citrus tea is an emerging tea drink produced from tea and the pericarp of citrus, which consumers have increasingly favored due to its potential health effects and unique flavor. This study aimed to simultaneously combine the characteristic volatile fingerprints with the odor activity values (OAVs) of different citrus teas for the first time by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that the establishment of a citrus tea flavor fingerprint based on HS-GC-IMS data can provide an effective means for the rapid identification and traceability of different citrus varieties. Moreover, 68 volatile compounds (OAV > 1) were identified by HS-SPME-GC-MS, which reflected the contribution of aroma compounds to the characteristic flavor of samples. Amongst them, the contribution of linalool with sweet flower fragrance was the highest. Odorants such as decanal, β-lonone, β-ionone, β-myrcene and D-limonene also contributed significantly to all samples. According to principal component analysis, the samples from different citrus teas were significantly separated. Visualization analysis based on Pearson correlation coefficients suggested that the correlation between key compounds was clarified. A comprehensive evaluation of the aroma of citrus tea will guide citrus tea flavor quality control and mass production.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4543
Author(s):  
Thais Pádua Freitas ◽  
Isabela Barroso Taver ◽  
Poliana Cristina Spricigo ◽  
Lucas Bueno do Amaral ◽  
Eduardo Purgatto ◽  
...  

The jabuticaba is a native Brazilian fruit that has aroused worldwide interest in terms of its nutritional composition and biological activity. However, research on the profile of volatile compounds (VOCs) emitted by these fruits is rare. This study presents the first identification of VOCs from four jabuticaba species. The aim of the study was to characterize the aromatic profile of the following species: ‘Sabará’ (Plinia jaboticaba), ‘Escarlate’ (Plinia phitrantha × Plinia cauliflora), ‘Otto Andersen’ (Plinia cauliflora), and ‘Esalq’ (Plinia phitrantha). The analysis was performed by headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (SPME-GC-MS). Multivariate analysis techniques applying the partial least squares-discriminant analysis (PLS-DA) and heatmap were used to compare the results. Fruit quality parameters were determined in terms of fresh mass (g), skin color, soluble solids, and titratable acidity. A total of 117 VOCs was identified including terpenoids, esters, alcohols, aldehydes, alkanes, ketones, and carboxylic acids, with 36 VOCs common to all four species. Terpenes were the majority for all jabuticabas with smaller contributions from other volatile classes, especially β-cubebene, β-elemene, and D-limonene for the ‘Otto Andersen’ jabuticaba.


ForScience ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. e00769
Author(s):  
Priscila Ferreira de Sales ◽  
Lidiany Mendonça Zacaroni Lima

A qualidade sensorial do chá está relacionada com a presença de voláteis que são formados nas etapas do processamento, assim o objetivo desse trabalho consistiu em investigar o perfil de Compostos Orgânicos Voláteis (COV´s) em amostras de chá comerciais com menta (amostra 1) e sem menta (amostras 2 e 3), por meio do emprego da técnica de microextração em fase sólida (SPME) e detecção por Cromatografia Gasosa acoplada à espectrometria de massas (CG-MS). As amostras foram submetidas ao tratamento por infusão, sendo avaliado o efeito da adição de sal (NaCl) para a extração dos compostos. As amostras exibiram uma alta complexidade, sendo detectados aproximadamente 68 compostos.  Empregando o reconhecimento de padrões, o qual envolveu os algoritmos de PCA e HCA, verificou-se que a amostra 1 se diferiu das demais por apresentar picos comuns com maior intensidade e por possuir compostos orgânicos voláteis característicos da referida amostra. Os resultados também permitiram inferir que o efeito dos tratamentos foi mais expressivo nessa amostra, visto que o processo de infusão atuou na diminuição dos compostos voláteis detectados pela técnica. A adição de sal favoreceu a extração dos analitos, em que se verificou que as amostras em infusão com NaCl apresentaram maior similaridade com aquelas na forma comercial. A mesma tendência foi observada nas amostras submetidas aos tratamentos. Palavras-chave: Cromatografia. Extração de analitos. Qualidade sensorial.   Comparative analysis of the profile of volatile compounds by HS-SPME in commercial samples of green tea and assessing the effect of infusion and addition salt Abstract As the sensory quality of the tea is related to the presence of volatile compounds that are formed in the processing steps, the objective of this work was to investigate the profile of volatile organic compounds (VOC's) in commercial mint tea samples (sample 1) and without mint (samples 2 and 3) through the use of microextraction technique of solid phase extraction (SPME) and detection by gas chromatography-mass spectrometry (GC-MS). The samples were subjected to treatment by infusion, being evaluated the effect of the addition of salt (NaCl) for the extraction of compounds. The samples exhibited a high complexity, about 68 compounds were detected. Employing the pattern recognition algorithms which involved PCA and HCA, it was found that sample 1 is differed from the others because it presents common peaks with greater intensity and having volatile organic compounds characteristic of said sample. The results also possible to infer that the treatment effect was more significant in this sample, because the infusion process worked at reduction of volatile compounds. Adding salt favored the extraction of analytes in which it was found that the samples infused with NaCl were similar to those in commercial form. The same trend was observed in all the samples submitted to treatments. Keywords: Chromatography. Extraction of analytes. Sensory quality.


Sign in / Sign up

Export Citation Format

Share Document