scholarly journals Cascading dominates large-scale disruptions in transport over complex networks

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246077
Author(s):  
Mark M. Dekker ◽  
Debabrata Panja

The core functionality of many socio-technical systems, such as supply chains, (inter)national trade and human mobility, concern transport over large geographically-spread complex networks. The dynamical intertwining of many heterogeneous operational elements, agents and locations are oft-cited generic factors to make these systems prone to large-scale disruptions: initially localised perturbations amplify and spread over the network, leading to a complete standstill of transport. Our level of understanding of such phenomena, let alone the ability to anticipate or predict their evolution in time, remains rudimentary. We approach the problem with a prime example: railways. Analysing spreading of train delays on the network by building a physical model, supported by data, reveals that the emergence of large-scale disruptions rests on the dynamic interdependencies among multiple ‘layers’ of operational elements (resources and services). The interdependencies provide pathways for the so-called delay cascading mechanism, which gets activated when, constrained by local unavailability of on-time resources, already-delayed ones are used to operate new services. Cascading locally amplifies delays, which in turn get transported over the network to give rise to new constraints elsewhere. This mechanism is a rich addition to some well-understood ones in, e.g., epidemiological spreading, or the spreading of rumours and opinions over (contact) networks, and stimulates rethinking spreading dynamics on complex networks. Having these concepts built into the model provides it with the ability to predict the evolution of large-scale disruptions in the railways up to 30-60 minutes up front. For transport systems, our work suggests that possible alleviation of constraints as well as a modular operational approach would arrest cascading, and therefore be effective measures against large-scale disruptions.

2013 ◽  
Vol 278-280 ◽  
pp. 2029-2032
Author(s):  
Hao Hua Zhang ◽  
Yu Ren Zhai ◽  
Wen Jiang Feng ◽  
Hai Shen

The networks of interdependencies in large-scale Object Oriented software systems are complex, visualization and understand become the important issues for developer. We propose that topology structure can be imaged to network and better understood via core structure decomposition based on complex networks. The core structure analysis allows characterizing networks beyond the degree distribution and uncovering some potential characteristics, Such as structural hierarchies, centrality and evolution. We analyze the core structure of some popular open source software and discuss the differences and similarities, get some noticeable properties, the result show the method provides an interesting view helping to comprehend and evaluate system in development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David March ◽  
Kristian Metcalfe ◽  
Joaquin Tintoré ◽  
Brendan J. Godley

AbstractThe COVID-19 pandemic has resulted in unparalleled global impacts on human mobility. In the ocean, ship-based activities are thought to have been impacted due to severe restrictions on human movements and changes in consumption. Here, we quantify and map global change in marine traffic during the first half of 2020. There were decreases in 70.2% of Exclusive Economic Zones but changes varied spatially and temporally in alignment with confinement measures. Global declines peaked in April, with a reduction in traffic occupancy of 1.4% and decreases found across 54.8% of the sampling units. Passenger vessels presented more marked and longer lasting decreases. A regional assessment in the Western Mediterranean Sea gave further insights regarding the pace of recovery and long-term changes. Our approach provides guidance for large-scale monitoring of the progress and potential effects of COVID-19 on vessel traffic that may subsequently influence the blue economy and ocean health.


Author(s):  
Danyang Sun ◽  
Fabien Leurent ◽  
Xiaoyan Xie

In this study we discovered significant places in individual mobility by exploring vehicle trajectories from floating car data. The objective was to detect the geo-locations of significant places and further identify their functional types. Vehicle trajectories were first segmented into meaningful trips to recover corresponding stay points. A customized density-based clustering approach was implemented to cluster stay points into places and determine the significant ones for each individual vehicle. Next, a two-level hierarchy method was developed to identify the place types, which firstly identified the activity types by mixture model clustering on stay characteristics, and secondly discovered the place types by assessing their profiles of activity composition and frequentation. An applicational case study was conducted in the Paris region. As a result, five types of significant places were identified, including home place, work place, and three other types of secondary places. The results of the proposed method were compared with those from a commonly used rule-based identification, and showed a highly consistent matching on place recognition for the same vehicles. Overall, this study provides a large-scale instance of the study of human mobility anchors by mining passive trajectory data without prior knowledge. Such mined information can further help to understand human mobility regularities and facilitate city planning.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Liming Pan ◽  
Dan Yang ◽  
Wei Wang ◽  
Shimin Cai ◽  
Tao Zhou ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Franz Kaiser ◽  
Vito Latora ◽  
Dirk Witthaut

AbstractIn our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counteracting strategies are thus heavily sought after. In this article, we introduce a general framework to analyse the spreading of failures in complex networks and demostrate that not only decreasing but also increasing the connectivity of the network can be an effective method to contain damages. We rigorously prove the existence of certain subgraphs, called network isolators, that can completely inhibit any failure spreading, and we show how to create such isolators in synthetic and real-world networks. The addition of selected links can thus prevent large scale outages as demonstrated for power transmission grids.


Author(s):  
Jiawei Wang ◽  
Yong-Yi Wang ◽  
William A. Bruce ◽  
Steve Rapp ◽  
Russell Scoles

Abstract Construction of a cross-country pipeline involves lifting the pipeline off the skids and lowering it into the trench (lifting and lowering-in). This can introduce the highest stress magnitude that the pipe may experience over its service life. If not managed properly, overly high stresses may cause integrity issues during construction and/or service. If the girth welds are qualified and accepted using alternative flaw acceptance criteria, such as those in API 1104 Annex A and CSA Z662 Annex K, these stresses must be kept below a preset level during lifting and lowering-in to satisfy the requirements of those standards. This paper covers the development and usage of a stress analysis tool for the continuous lifting and lowering-in of pipe strings without a concrete coating or river weights. The outcome of the stress analysis can be used to develop lifting and lowering-in plans for construction crews. The core functionality of the application tool is to calculate the stresses from bending in the vertical and horizontal planes. The stresses from vertical bending are derived from an extensive analysis of continuous lifting and lowering-in processes. The stresses from horizontal bending are calculated using closed-form analytical solutions. The tool provides a graphical interface that interprets the background stress analysis results and displays information necessary for the development of lifting and lowering-in plans. The tool can be used to evaluate what-if scenarios for various tentative lifting and lowering-in scenarios. The process of using the tool to develop lifting and lowering-in plans is demonstrated in this paper through an example problem. The number of sidebooms and other lifting and lowering-in parameters such as sideboom spacing and lifting height range are changed to make the lifting and lowering-in plan easy to use for the laying contractors. Such tradeoffs can be addressed proactively with construction contractors to ensure that a mutually acceptable approach to lifting and lowering-in is taken.


Author(s):  
S. Varatharajan ◽  
K. V. Sureshkumar ◽  
K. V. Kasiviswanathan ◽  
G. Srinivasan

The second stage of Indian nuclear programme envisages the deployment of fast reactors on a large scale for the effective use of India’s limited uranium reserves. The Fast Breeder Test Reactor (FBTR) at Kalpakkam is a loop type, sodium cooled fast reactor, meant as a test bed for the fuels and structural materials for the Indian fast reactor programme. The reactor was made critical with a unique high plutonium MK-I carbide fuel (70% PuC+30%UC). Being a unique untested fuel of its kind, it was decided to test it as a driver fuel, with conservative limits on Linear Heat Rating and burn-up, based on out-of-pile studies. FBTR went critical in Oct 1985 with a small core of 23 MK-I fuel subassemblies. The Linear Heat Rating and burn-up limits for the fuel were conservatively set at 250 W/cm & 25 GWd/t respectively. Based on out-of-pile simulation in 1994, it was possible to raise the LHR to 320 W/cm. It was decided that when the fuel reaches the target burn-up of 25 GWd/t, the MK-I core would be progressively replaced with a larger core of MK-II carbide fuel (55% PuC+45%UC). Induction of MK-II subassemblies was started in 1996. However, based on the Post-Irradiation Examination (PIE) of the MK-I fuel at 25, 50 & 100 GWd/t, it became possible to enhance the burn-up of the MK-I fuel to 155 GWd/t. More than 900 fuel pins of MK-I composition have reached 155 GWd/t without even a single failure and have been discharged. One subassembly (61 pins) was taken to 165 GWd/t on trial basis, without any clad failure. The core has been progressively enlarged, adding MK-I subassemblies to compensate for the burn-up loss of reactivity and replacement of discharged subassemblies. The induction of MK-II fuel was stopped in 2003. One test subassembly simulating the composition of the MOX fuel (29% PuO2) to be used in the 500 MWe Prototype Fast Breeder Reactor was loaded in 2003. It is undergoing irradiation at 450 W/cm, and has successfully seen a burn-up of 92.5 GWd/t. In 2006, it was proposed to test high Pu MOX fuel (44% PuO2), in order to validate the fabrication and fuel cycle processes developed for the power reactor MOX fuel. Eight MOX subassemblies were loaded in FBTR core in 2007. The current core has 27 MK-I, 13 MK-II, eight high Pu MOX and one power reactor MOX fuel subassemblies. The reactor power has been progressively increased from 10.5 MWt to 18.6 MWt, due to the progressive enlargement of the core. This paper presents the evolution of the core based on the progressive enhancement of the burn-up limit of the unique high Pu carbide fuel.


Author(s):  
Mitsuhiro Suzuki ◽  
Takeshi Takeda ◽  
Hideo Nakamura

Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary sides in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.


2019 ◽  
Vol 33 (01) ◽  
pp. 1850421 ◽  
Author(s):  
Lang Zeng ◽  
Zhen Jia ◽  
Yingying Wang

Coarse-graining of complex networks is one of the important algorithms to study large-scale networks, which is committed to reducing the size of networks while preserving some topological information or dynamic properties of the original networks. Spectral coarse-graining (SCG) is one of the typical coarse-graining algorithms, which can keep the synchronization ability of the original network well. However, the calculation of SCG is large, which limits its real-world applications. And it is difficult to accurately control the scale of the coarse-grained network. In this paper, a new SCG algorithm based on K-means clustering (KCSCG) is proposed, which cannot only reduce the amount of calculation, but also accurately control the size of coarse-grained network. At the same time, KCSCG algorithm has better effect in keeping the network synchronization ability than SCG algorithm. A large number of numerical simulations and Kuramoto-model example on several typical networks verify the feasibility and effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document