scholarly journals A comprehensive integrated post-GWAS analysis of Type 1 diabetes reveals enhancer-based immune dysregulation

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257265
Author(s):  
Seung-Soo Kim ◽  
Adam D. Hudgins ◽  
Jiping Yang ◽  
Yizhou Zhu ◽  
Zhidong Tu ◽  
...  

Type 1 diabetes (T1D) is an organ-specific autoimmune disease, whereby immune cell-mediated killing leads to loss of the insulin-producing β cells in the pancreas. Genome-wide association studies (GWAS) have identified over 200 genetic variants associated with risk for T1D. The majority of the GWAS risk variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes substantially contribute to T1D. However, identification of causal regulatory variants associated with T1D risk and their affected genes is challenging due to incomplete knowledge of non-coding regulatory elements and the cellular states and processes in which they function. Here, we performed a comprehensive integrated post-GWAS analysis of T1D to identify functional regulatory variants in enhancers and their cognate target genes. Starting with 1,817 candidate T1D SNPs defined from the GWAS catalog and LDlink databases, we conducted functional annotation analysis using genomic data from various public databases. These include 1) Roadmap Epigenomics, ENCODE, and RegulomeDB for epigenome data; 2) GTEx for tissue-specific gene expression and expression quantitative trait loci data; and 3) lncRNASNP2 for long non-coding RNA data. Our results indicated a prevalent enhancer-based immune dysregulation in T1D pathogenesis. We identified 26 high-probability causal enhancer SNPs associated with T1D, and 64 predicted target genes. The majority of the target genes play major roles in antigen presentation and immune response and are regulated through complex transcriptional regulatory circuits, including those in HLA (6p21) and non-HLA (16p11.2) loci. These candidate causal enhancer SNPs are supported by strong evidence and warrant functional follow-up studies.

2019 ◽  
Vol 15 ◽  
pp. 117693431986086
Author(s):  
Shan-Shan Dong ◽  
Yan Guo ◽  
Tie-Lin Yang

Genome-wide association studies (GWASs) have successfully identified thousands of susceptibility loci for human complex diseases. However, missing heritability is still a challenging problem. Considering most GWAS loci are located in regulatory elements, we recently developed a pipeline named functional disease-associated single-nucleotide polymorphisms (SNPs) prediction (FDSP), to predict novel susceptibility loci for complex diseases based on the interpretation of regulatory features and published GWAS results with machine learning. When applied to type 2 diabetes and hypertension, the predicted susceptibility loci by FDSP were proved to be capable of explaining additional heritability. In addition, potential target genes of the predicted positive SNPs were significantly enriched in disease-related pathways. Our results suggested that taking regulatory features into consideration might be a useful way to address the missing heritability problem. We hope FDSP could offer help for the identification of novel susceptibility loci for complex diseases.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Antoinette F. van Ouwerkerk ◽  
Fernanda M. Bosada ◽  
Karel van Duijvenboden ◽  
Matthew C. Hill ◽  
Lindsey E. Montefiori ◽  
...  

Abstract Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e78577 ◽  
Author(s):  
Finja Büchel ◽  
Florian Mittag ◽  
Clemens Wrzodek ◽  
Andreas Zell ◽  
Thomas Gasser ◽  
...  

Author(s):  
Ning Liu ◽  
Timothy Sadlon ◽  
Ying Ying Wong ◽  
Stephen Pederson ◽  
James Breen ◽  
...  

AbstractBackgroundGenome-wide association and fine-mapping studies have enabled the discovery of single nucleotide polymorphisms (SNPs) and other variants that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). However, many of the SNPs lie in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune disease progression.MethodsAutoimmunity results from a failure of immune tolerance, suggesting that regulatory T cells (Treg) are likely a significant point of impact for this genetic risk, as Treg are critical for immune tolerance. Focusing on T1D as a model of defective function of Treg in autoimmunity, we designed a SNPs filtering workflow called 3 Dimensional Functional Annotation of Accessible Cell Type Specific SNPs (3DFAACTS-SNP) that utilises overlapping profiles of Treg-specific epigenomic data (ATAC-seq, Hi-C and FOXP3-ChIP) to identify regulatory elements potentially driving the effect of variants associated with T1D, and the gene(s) that they control.ResultsUsing 3DFAACTS-SNP we identified 36 SNPs with plausible Treg-specific mechanisms of action contributing to T1D from 1,228 T1D fine-mapped variants, identifying 119 novel interacting regions resulting in the identification of 51 candidate target genes. We further demonstrated the utility of the workflow by applying it to three other fine-mapped/meta-analysed SNP autoimmune datasets, identifying 17 Treg-centric candidate variants and 35 interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of any genetic variation using all common (>10% allele frequency) variants from the Genome Aggregation Database (gnomAD). We identified 7,900 candidate variants and 3,245 candidate target genes, generating a list of potential sites for future T1D or autoimmune research.ConclusionsWe demonstrate that it is possible to further prioritise variants that contribute to T1D based on regulatory function and illustrate the power of using cell type specific multi-omics datasets to determine disease mechanisms. The 3DFAACTS-SNP workflow can be customised to any cell type for which the individual datasets for functional annotation have been generated, giving broad applicability and utility.


2019 ◽  
Vol 6 (2) ◽  
pp. 4327-4331
Author(s):  
Dr. Kishore Kumar Soni ◽  
Dr. Sushil Singh

Type 1 Diabetes (T1D) is autoimmune disease with a sturdy genetic component, which, through interactions with particular environmental factors, causes disease onset. T1D usually reveals in early to mid-childhood through the autoimmune destruction of pancreatic cells resulting in a lack of insulin production. Traditionally, prior to genome-wide association studies (GWAS), six loci in the genome were fully established to be associated with T1D. The originations of genetic factors involved in T1D through GWAS present the first step in a long process leading to cure. Genes uncovered using this approach is indeed necessary to disease biology and will define the key molecular pathways leading to cure of T1D. However, such genome wide scans can lack coverage in certain regions where it is difficult to , thus, it is possible that other loci with practical effect sizes remain to be uncovered through whole genome sequencing approaches. In this review, we address recent expansions in the genetics of T1D and provide an update on the latest predisposition loci added to the list of genes involved in the of T1D


2020 ◽  
Vol 36 (16) ◽  
pp. 4440-4448 ◽  
Author(s):  
Zhenqin Wu ◽  
Nilah M Ioannidis ◽  
James Zou

Abstract Summary Interpreting genetic variants of unknown significance (VUS) is essential in clinical applications of genome sequencing for diagnosis and personalized care. Non-coding variants remain particularly difficult to interpret, despite making up a large majority of trait associations identified in genome-wide association studies (GWAS) analyses. Predicting the regulatory effects of non-coding variants on candidate genes is a key step in evaluating their clinical significance. Here, we develop a machine-learning algorithm, Inference of Connected expression quantitative trait loci (eQTLs) (IRT), to predict the regulatory targets of non-coding variants identified in studies of eQTLs. We assemble datasets using eQTL results from the Genotype-Tissue Expression (GTEx) project and learn to separate positive and negative pairs based on annotations characterizing the variant, gene and the intermediate sequence. IRT achieves an area under the receiver operating characteristic curve (ROC-AUC) of 0.799 using random cross-validation, and 0.700 for a more stringent position-based cross-validation. Further evaluation on rare variants and experimentally validated regulatory variants shows a significant enrichment in IRT identifying the true target genes versus negative controls. In gene-ranking experiments, IRT achieves a top-1 accuracy of 50% and top-3 accuracy of 90%. Salient features, including GC-content, histone modifications and Hi-C interactions are further analyzed and visualized to illustrate their influences on predictions. IRT can be applied to any VUS of interest and each candidate nearby gene to output a score reflecting the likelihood of regulatory effect on the expression level. These scores can be used to prioritize variants and genes to assist in patient diagnosis and GWAS follow-up studies. Availability and implementation Codes and data used in this work are available at https://github.com/miaecle/eQTL_Trees. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 22 (1) ◽  
pp. 125
Author(s):  
Duaa Ahmed Elhag ◽  
Manoj Kumar ◽  
Souhaila Al Khodor

Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.


Sign in / Sign up

Export Citation Format

Share Document