scholarly journals Analysis of chemical compositions and larvicidal activity of nut extracts from Areca catechu Linn against Aedes (Diptera: Culicidae)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260281
Author(s):  
Madhuri Bharathithasan ◽  
Darvin R. Ravindran ◽  
Dinesh Rajendran ◽  
Sim Ka Chun ◽  
S. A. Abbas ◽  
...  

Background There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae). Methods The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus. Results The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid <n->, and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents. Conclusions Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Darvin R. Ravindran ◽  
Madhuri Bharathithasan ◽  
Patmani Ramaiah ◽  
Mohd Sukhairi Mat Rasat ◽  
Dinesh Rajendran ◽  
...  

Mosquitoes have always been a human health threat; the major global health problems caused by them are malaria, dengue fever, yellow fever, and Zika as well as several other vector-borne outbreaks. The major problems in controlling these vectors borne diseases are related to resistance to eradication measures. Different classes of insecticides used for controlling public health have raised the concern of resistant problems with mosquitoes and environmental pollution caused by the control measures. Thus, a search for alternative natural compounds is necessary for solving the insecticidal resistance problem using pesticides in the larval stage of vector development as well as creating a chemical-free environment for a healthy society. Hence, the major focus of this study is to identify the larvicidal mechanisms, metabolite, antioxidants, and chemical compounds and elucidate their structures from C. ternatea flower and to test their efficacies against early 4th instar larvae of Aedes aegypti and Aedes albopictus. Clitoria ternatea flowers were collected from the garden of the Faculty of Medicine in International Quest University, Ipoh, Perak, and thence used for crude extraction. Further on, the metabolite test, antioxidant test, and chromatography techniques were conducted to identify the chemical composition of extracts and their chemical structures were identified using GCMS-QP2010 Ultra (Shimadzu). Next, the extracts were evaluated against the early 4th instar larvae of Aedes mosquito vectors following the WHO procedures for larval bioassays. The larvicidal activity of Clitoria ternatea flower extracts evidently affected the early 4th instar larvae of Aedes mosquito vectors. The highest larvicidal activity was observed against the early 4th instar larvae of Aedes aegypti with the LC50 and LC95 values of 1056 and 2491 mg/L, respectively. Meanwhile, the larvae bioassay test for Aedes albopictus recorded the LC50 and LC95 values of 1425 and 2753 mg/L. Moreover, the results for nontarget organism test on guppy fish, Poecilia reticulata, showed no mortalities with flower extracts at 2500 mg/L, hence posing no toxic effects on fish. In this study, we have found a total of 16 chemical compounds and 6 chemical compounds have been reported to possess direct insecticidal, larvicidal, and pupicidal effects. Six chemicals with insecticidal properties were found to be glycerin, 2-hydroxy-gamma-butyrolactone, neophytadiene, n-hexadecanoic acid, cis-vaccenic acid, and octadecanoic acid with a total of 28.7% efficacy. Clitoria ternatea flower extracts also showed different types of phenols such as anthocyanins, flavonoids, and tannins. Our findings showed that the crude extract of Clitoria ternatea flower bioactive molecules is effective and may be developed as biolarvicide for Aedes mosquito vector control. Furthermore, this study also provided a baseline understanding for future research work in the field of applications of Clitoria ternatea flower extracts for their long-term effects on human health such as a food additive, antioxidant, and cosmetic.


2020 ◽  
Vol 49 (1) ◽  
pp. 45-54
Author(s):  
Thiago Andre Santos de Andrade ◽  
Ivanise Maria de Santana ◽  
George Chaves Jimenez ◽  
Eulina Tereza Nery Farias ◽  
Lucia Oliveira de Macedo ◽  
...  

The control of Aedes aegypti has been considered one of the most important public health challenges worldwide. Chemical compounds have long been used for this purpose, but resistance to these molecules has also increased. Therefore, over the last few years several studies have focused on the development of alternative tools, particularly those based on plant metabolites. The purpose of this study was to assess the larvicidal activity of Caesalpinia ferrea and Lippia origanoides against Ae. aegypti. Larvae (L3) of Ae. aegypti Liverpool and Rockefeller strains, as well as of the Recife population were exposed to different concentrations  of C. ferrea (ranging from 13.1 to 105 mg/mL) and L. origanoides (ranging from 16.3 to 130 mg/mL), and the mortality rate was evaluated up to 48 hours after the beginning of the experiment. All tested groups and  ontrol group were quadruplicated. For C. ferrea, mortality ranged from 42.5% to 100% for Ae. aegypti Liverpool strain,from 67% to 100% for Ae. aegypti Rockfeller strain, and 57% to 100% for Ae. aegypti Recife population after 48 hours of larval exposure. For L. origanoides, the larvicidal activity ranged from 75% to 100% for Ae. aegypti Liverpool strain, from 61.5% to 100% for Ae. aegypti Rockfeller strain, and from 60.5% to 100% for Ae.aegypti Recife population. The hydro ethanol extract of C. ferrea and L. origanoides presented larvicidal activity against Ae. aegypti.KEY WORDS: Aedes aegypti; hydro ethanol extracts; Caesalpinia ferrea; Lippia sidoides; botanical insecticide; mosquitoes.


2017 ◽  
Vol 54 (3) ◽  
pp. 670-676 ◽  
Author(s):  
Agustín Alvarez Costa ◽  
Cecilia V. Naspi ◽  
Alejandro Lucia ◽  
Héctor M. Masuh

2019 ◽  
Vol 14 (6) ◽  
pp. 1934578X1985003 ◽  
Author(s):  
Nguyen Huy Hung ◽  
Prabodh Satyal ◽  
Do Ngoc Dai ◽  
Thieu Anh Tai ◽  
Le Thi Huong ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0195681 ◽  
Author(s):  
Temsiri Yooyangket ◽  
Paramaporn Muangpat ◽  
Raxsina Polseela ◽  
Sarunporn Tandhavanant ◽  
Aunchalee Thanwisai ◽  
...  

Author(s):  
T.D.H. Dinh ◽  
Q.T. Le ◽  
T.D. Nguyen ◽  
T.Q.T. Nguyen ◽  
A.S. Ho ◽  
...  

A Vietnamese domestic plant namely Solanum nigrum (S. nigrum) was subjected to test for larvicidal activity on two majors Dengue hemorrhagic fever (DHF) vectors Aedes aegypti (Ae. aegypti) and Aedes albopictus (Ae. albopictus). The plant was processed to get infusions in hot water or extracted in ethanol. Laboratory and field larval strains of two Aedes species were exposed to the infusions and extract at increasing concentrations for one hour and followed-up intensively for up to 72 hours. The obtained results of bioassay showed larvicidal effects of extract on all mosquito strains. The effects on laboratory strain of Ae. aegypti larvae were correlated with infusions and extract concentrations. Chopped plant infusions in hot water indicated mortality up to 77.3% of larvae. Ground plant infusions killed all of exposed larvae at day 3 postexposure. Median lethal concentrations (LC50,s) of chopped and ground plant infusions were 10.25 and 7.54%, respectively. Ethanolic extract had very strong effect on experimental subjects. Within 72 hours, 100% of laboratory strain of Ae. aegypti larvae died after exposure to extract at 100 parts per million (ppm) or higher concentrations. Ethanolic plant extract showed similar larvicidal effect on field strains of Ae. aegypti and Ae. albopictus. The percentage mortality of field strains larvae reached 100% after exposure to 100 ppm of plant extract. At concentrations of 1000 ppm, 100% of exposed larvae died with 8 hours. LC50 on tested larvae was 25.07-33.60 ppm. Strong larvicidal activity of S. nigrum suggests the possible application in DHF vector control effort.


2019 ◽  
Vol 12 (3) ◽  
pp. 112 ◽  
Author(s):  
Rodrigues ◽  
Silva ◽  
Pinto ◽  
Lima dos Santos ◽  
Carneiro de Freitas ◽  
...  

The mosquitoes Aedes aegypti and Aedes albopictus are vectors of arboviruses that cause dengue, zika and chikungunya. Bioactive compounds from plants are environmentally sustainable alternatives to control these vectors and thus the arboviruses transmitted by them. The present study evaluated the larvicidal activity of an acetogenin-rich fraction (ACERF) and its main constituent annonacin obtained from Annona muricata seeds on Ae. aegypti and Ae. albopictus. The larvicidal assays were performed using different concentrations to calculate the LC50 and LC90 values observed 24 h after exposure to the treatment. Annonacin was more active against Ae. aegypti (LC50 2.65 μg·mL−1) in comparison with Ae. albopictus (LC50 8.34 μg·mL−1). In contrast, the acetogenin-rich fraction was more active against Ae. albopictus (LC50 3.41 μg·mL−1) than Ae. aegypti (LC50 12.41 μg·mL−1). ACERF and annonacin treated larvae of Ae. aegypti and Ae. albopictus showed significant differences in the inhibition of their metabolic enzymes when compared to untreated larvae. The results demonstrate the relevant larvicidal action of the acetogenin-rich fraction and annonacin showing the potential to develop new products for the control of Ae. aegypti and Ae. albopictus.


Author(s):  
Anne Carolina ◽  
Maman Maman

The aim of this research was to examine the larvicidal activity of essential oil (EO) extracted from nutmeg (Myristica fragrans Houtt) leaves and fruits by steam distillation, and to analyze its chemical compounds. The EO yield of nutmeg leaves and fruits collected from the same tree was 0.66% and 0.30%, respectively. Larvicidal tests with the EO were carried out against Aedes aegypti (L.) (Diptera: Culicidae). The concentrations of nutmeg EO used for the larvicidal assay were 50, 100, 150, 200, and 250 μg/mL. The results showed that fruit oil was more toxic than the leaf oil. LC50 values of leaf and fruit EOs were 133.8 and 110.1 µg/mL, respectively. The chromatogram of GC-MS showed that the chemical components in nutmeg leaf and fruit EOs were dominated by α-pinene, sabinene, β-pinene, delta-3-carene, limonene, β-phellandrene, α-terpinolene, linalool, safrole, croweacin, and myristicin.


Sign in / Sign up

Export Citation Format

Share Document