Analysis of Point Mutations by Use of Amber Stop Codon Suppression

2003 ◽  
pp. 65-74
Author(s):  
Scott A. Lesley
2020 ◽  
Author(s):  
Ruigao Song ◽  
Yu Wang ◽  
Qiantao Zheng ◽  
Jing Yao ◽  
Chunwei Cao ◽  
...  

AbstractPrecise and simultaneous acquisition of multiple beneficial alleles in the genome to improve pig performance are pivotal for making elite breeders. Cytidine base editors (CBEs) have emerged as powerful tools for site-specific single nucleotide replacement. Here, we compare the editing efficiency of four CBEs in porcine embryonic cells and embryos to show that hA3A-BE3-Y130F and hA3A-eBE3-Y130F consistently results in higher base-editing efficiency and lower toxic effects to in vitro embryo development. We also show that zygote microinjection of hA3A-BE3-Y130F results in one-step generation of pigs (3BE pigs) harboring C-to-T point mutations, including a stop codon in CD163 and in MSTN and induce beneficial allele in IGF2. The 3BE pigs showed improved growth performance, hip circumference, food conversion rate. Our results demonstrate that CBEs can mediate high throughput genome editing by direct embryo microinjection. Our approach allows immediate introduction of novel alleles for beneficial traits in transgene-free animals for pyramid breeding.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 546 ◽  
Author(s):  
David Schwark ◽  
Margaret Schmitt ◽  
John Fisk

Non-canonical amino acids (ncAAs) are finding increasing use in basic biochemical studies and biomedical applications. The efficiency of ncAA incorporation is highly variable, as a result of competing system composition and codon context effects. The relative quantitative contribution of the multiple factors affecting incorporation efficiency are largely unknown. This manuscript describes the use of green fluorescent protein (GFP) reporters to quantify the efficiency of amber codon reassignment using the Methanocaldococcus jannaschii orthogonal pair system, commonly employed for ncAA incorporation, and quantify the contribution of release factor 1 (RF1) to the overall efficiency of amino acid incorporation. The efficiencies of amber codon reassignments were quantified at eight positions in GFP and evaluated in multiple combinations. The quantitative contribution of RF1 competition to reassignment efficiency was evaluated through comparisons of amber codon suppression efficiencies in normal and genomically recoded Escherichia coli strains. Measured amber stop codon reassignment efficiencies for eight single stop codon GFP variants ranged from 51 to 117% in E. coli DH10B and 76 to 104% in the RF1 deleted E. coli C321.ΔA.exp. Evaluation of efficiency changes in specific sequence contexts in the presence and absence of RF1 suggested that RF1 specifically interacts with +4 Cs and that the RF1 interactions contributed approximately half of the observed sequence context-dependent variation in measured reassignment efficiency. Evaluation of multisite suppression efficiencies suggests that increasing demand for translation system components limits multisite incorporation in cells with competing RF1.


2021 ◽  
Author(s):  
Sung-ah Hong ◽  
Song-Ee Kim ◽  
A-young Lee ◽  
Gue-ho Hwang ◽  
Jong Hoon Kim ◽  
...  

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by loss-of-function mutations in the COL7A1 gene, which encodes type VII collagen (C7), a protein that functions in skin adherence. From 36 Korean RDEB patients, we identified a total of 69 pathogenic mutations (40 variants without recurrence), including point mutations (72.5%) and insertion/deletion mutations (27.5%). We used base and prime editing to correct mutations in fibroblasts from two patients (Pat1, who carried a c.3631C>T mutation in one allele, and Pat2, who carried a c.2005C>T mutation in one allele). We applied adenine base editors (ABEs) to correct the pathogenic mutation or to bypass a premature stop codon in Pat1-derived primary fibroblasts. To expand the targeting scope, we also utilized prime editors (PEs) to correct the mutations in Pat1- and Pat2-derived fibroblasts. Ultimately, we found that both ABE- and PE-mediated correction of COL7A1 mutations restored full-length C7 expression, reversed the impaired adhesion and proliferation exhibited by the patient-derived fibroblasts, and, following transfer of edited patient-derived fibroblasts into the skin of immunodeficient mice, led to C7 deposition within the dermal-epidermal junction. These results suggest that base and prime editing could be feasible strategies for ex vivo gene editing to treat RDEB.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2568-2577 ◽  
Author(s):  
Neil D. Avent ◽  
Peter G. Martin ◽  
Sylvia S. Armstrong-Fisher ◽  
Wendy Liu ◽  
Kirstin M. Finning ◽  
...  

Abstract The human blood group Rh antigens are expressed by proteins encoded by a pair of highly homologous genes located at chromosome 1p34-36. One of the genes (RHCE ) encodes Rh CcEe antigens, while the other (RHD) the D antigen. Point mutations in the RHCE gene generate the C/c and E/e polymorphisms, while it has been shown that an RHD gene deletion can generate the D-negative phenotype. We have analyzed intron 4 of the RHCE and RHD genes and have defined the site of an RHD-specific deletion located in this intron. Using a multiplex RHD typing assay, which combines a reverse polymerase chain reaction (PCR) primer, which straddles this RHD-specific sequence, and a pair of primers located in exon 10 of the RHD gene, we have analyzed 357 different genomic DNA samples derived from individuals expressing D+, D−, weak D, and partial D phenotypes. Of these, we have noted a significant discordance with our multiplex PCR assay in the D− phenotypes dCcee and dccEe (which have been previously described) and weak D phenotypes. Our results suggest that in five serologically D− individuals we have identified an apparently intact RHD gene. Sequence analysis of transcripts obtained from one of these individuals (of phenotype dCCee) illustrates the presence of full-length RHD transcripts, which have a point mutation at nucleotide 121 (C → T), which generates an in-frame stop codon (Gln41Stop). Thus, we describe a different molecular basis for generating the D− phenotype to the complete RHD gene deletion described previously. We also show that there are discordances with serotype and the multiplex assay in weak D and partial D phenotypes, indicating that the underlying molecular basis can be heterogeneous. Existing Rh D PCR assays assume the complete absence of the RHD gene in D− phenotypes. We describe a different molecular basis for generating the D− phenotype to the complete RHD gene deletion described previously.


2018 ◽  
Vol 29 (8) ◽  
pp. 2244-2254 ◽  
Author(s):  
Tomoko Horinouchi ◽  
Kandai Nozu ◽  
Tomohiko Yamamura ◽  
Shogo Minamikawa ◽  
Takashi Omori ◽  
...  

BackgroundX-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the COL4A5 gene. Genotype-phenotype correlation in male XLAS is relatively well established; relative to truncating mutations, nontruncating mutations exhibit milder phenotypes. However, transcript comparison between XLAS cases with splicing abnormalities that result in a premature stop codon and those with nontruncating splicing abnormalities has not been reported, mainly because transcript analysis is not routinely conducted in patients with XLAS.MethodsWe examined transcript expression for all patients with suspected splicing abnormalities who were treated at one hospital between January of 2006 and July of 2017. Additionally, we recruited 46 males from 29 families with splicing abnormalities to examine genotype-phenotype correlation in patients with truncating (n=21, from 14 families) and nontruncating (n=25, from 15 families) mutations at the transcript level.ResultsWe detected 41 XLAS families with abnormal splicing patterns and described novel XLAS atypical splicing patterns (n=14) other than exon skipping caused by point mutations in the splice consensus sequence. The median age for developing ESRD was 20 years (95% confidence interval, 14 to 23 years) among patients with truncating mutations and 29 years (95% confidence interval, 25 to 40 years) among patients with nontruncating mutations (P=0.001).ConclusionsWe report unpredictable atypical splicing in the COL4A5 gene in male patients with XLAS and reveal that renal prognosis differs significantly for patients with truncating versus nontruncating splicing abnormalities. Our results suggest that splicing modulation should be explored as a therapy for XLAS with truncating mutations.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 517-525 ◽  
Author(s):  
H Mikkola ◽  
M Syrjala ◽  
V Rasi ◽  
E Vahtera ◽  
E Hamalainen ◽  
...  

Abstract Congenital deficiency in coagulation factor XIII is a rare autosomal recessive bleeding disorder. Although the defect was characterized over 30 years ago, little is known about the molecular basis of the disorder. Here, we show two novel point mutations in the gene of the A- subunit of factor XIII in the genetically isolated population of Finland. All eight factor XIII-deficient families identified in Finland were studied. The exons of the gene of A-subunit were amplified individually by polymerase chain reaction and subsequently screened by single-strand conformation polymorphism. Sequence analysis of the abnormally migrating fragments showed two point mutations resulting in an amino acid alteration. A C-to-T transition at Arg-661 in exon XIV created a premature stop codon. This mutation was detected in six of the eight families, thus being the major alteration causing FXIII deficiency in Finland. In two of the six families, the patients were compound heterozygotes with the Arg-661-Stop mutation in one allele and either a T-to-C point mutation in exon VI or a thus far uncharacterized mutation in the other allele. The T-to-C transition in exon VI resulted in a substitution of threonine for methionine 242. The transition was found in one family only, where it was in the heterozygote form combined with the Arg-661-Stop mutation. To evaluate the consequences of these mutations, steady-state FXIII mRNA levels were quantitated by solid-phase minisequencing. In addition to the termination of translation 70 amino acids before the initial stop codon, the Arg-661- Stop mutation causes a 10- to 30-fold reduction in FXIII mRNA levels. This is also likely to result in a low translation level in the truncated polypeptide. In contrast, Met-242-Thr mutation does not seem to affect the level of mRNA. Here, the absence of a functional and immunodetectable protein is probably caused by an altered conformation of the mutant polypeptide, resulting in early degradation of the defective protein.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2862-2869 ◽  
Author(s):  
Claude Preudhomme ◽  
Delphine Warot-Loze ◽  
Christophe Roumier ◽  
Nalthalie Grardel-Duflos ◽  
Richard Garand ◽  
...  

Abstract The AML1 gene, situated in 21q22, is often rearranged in acute leukemias through t(8;21) translocation, t(12;21) translocation, or less often t(3;21) translocation. Recently, point mutations in the Runt domain of the AML1 gene have also been reported in leukemia patients. Observations for mutations of the Runt domain of the AML1 gene in bone marrow cells were made in 300 patients, including 131 with acute myeloid leukemia (AML), 94 with myelodysplastic syndrome (MDS), 28 with blast crisis chronic myeloid leukemia (CML), 3 with atypical CML, 41 with acute lymphoblastic leukemia (ALL), and 3 with essential thrombocythemia (ET). Forty-one of the patients had chromosome 21 abnormalities, including t(8;21) in 6 of the patients with AML, t(12;21) in 8 patients with ALL, acquired trisomy 21 in 17 patients, tetrasomy 21 in 7 patients, and constitutional trisomy 21 (Down syndrome) in 3 patients. A point mutation was found in 14 cases (4.7%), including 9 (22%) of the 41 patients with AML of the Mo type (MoAML) (none of them had detectable chromosome 21 rearrangement) and 5 (38%) of the 13 myeloid malignancies with acquired trisomy 21 (1 M1AML, 2 M2AML, 1 ET, and 1 atypical CML). In at least 8 of 9 mutated cases of MoAML, both AML alleles were mutated: 3 patients had different stop codon mutations of the 2 AML1 alleles, and 5 patients had the same missense or stop codon mutation in both AML1 alleles, which resulted in at least 3 of the patients having duplication of the mutated allele and deletion of the normal residual allele, as shown by FISH analysis and by comparing microsatellite analyses of several chromosome 21 markers on diagnosis and remission samples. In the remaining mutated cases, with acquired trisomy 21, a missense mutation of AML1, which involved 2 of the 3 copies of the AML1 gene, was found. Four of the 7 mutated cases could be reanalyzed in complete remission, and no AML1 mutation was found, showing that mutations were acquired in the leukemic clone. In conclusion, these findings confirm the possibility of mutations of the Runt domain of the AML1 gene in leukemias, mainly in MoAML and in myeloid malignancies with acquired trisomy 21. AML1 mutations, in MoAML, involved both alleles and probably lead to nonfunctional AML1 protein. As AML1 protein regulates the expression of the myeloperoxidase gene, the relationship between AML1 mutations and Mo phenotype in AML will have to be further explored.


Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1041-1047 ◽  
Author(s):  
Feng Zhou ◽  
Hai-Yan Hu ◽  
Yu-Lu Song ◽  
Yu-Qing Gao ◽  
Qi-Li Liu ◽  
...  

The gray mold caused by Botrytis cinerea has a significant impact on tomato production throughout the world. Although the synthetic fungicide fludioxonil can effectively control B. cinerea, there have been several reports of resistance to this fungicide. This study indicated that all of the fludioxonil-resistant strains tested, including one field-resistant isolate and four laboratory strains, had reduced fitness relative to sensitive isolates. In addition to having reduced growth, sporulation, and pathogenicity, the resistant strains were more sensitive to osmotic stress and had significantly (P < 0.05) higher peroxidase activity. BOs1, a kinase in the high-osmolarity glycerol stress response signal transduction pathway, is believed to harbor mutations related to fludioxonil resistance. Sequence analysis of their BOs1 sequences indicated that the fludioxonil-resistant field isolate, XXtom1806, had four point mutations resulting in four amino acid changes (I365S, S531G, T565N, and T1267A) and three amino acids (I365S, S531G, and T565N) in the histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis receptors, and phosphatases domain, which associated with fludioxonil binding. Similarly, two of the laboratory strains, XXtom-Lab1 and XXtom-Lab4, had three (Q846S, I1126S, and G415D) and two (P1051S and V1241M) point mutations, respectively. A third strain, XXtom-lab3, had a 52-bp insertion that included a stop codon at amino acid 256. Interestingly, the BOs1 sequence of the fourth laboratory strain, XXtom-lab5, was identical to those of the sensitive isolates, indicating that an alternative resistance mechanism exists. The study also found evidence of positive cross-resistance between fludioxonil and the dicarboximide fungicides procymidone and iprodione, but no cross-resistance was detected with any other fungicides tested, including boscalid, carbendazim, tebuconazole, and fluazinam.


Sign in / Sign up

Export Citation Format

Share Document