A Novel Method for Modification of Tumor Cells with Bacterial Superantigen with a Heterobifunctional Cross-Linking Agent in Immunotherapy of Cancer

2003 ◽  
Vol 25 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Motomu Shimizu ◽  
Akio Matsuzawa ◽  
Yasutaka Takeda
Author(s):  
Gavuthami Murugesan ◽  
Viviana G Correia ◽  
Angelina S Palma ◽  
Wengang Chai ◽  
Chunxia Li ◽  
...  

Abstract Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-β. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-β secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3052-3052
Author(s):  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
Heribert Juergens ◽  
Claudia Rossig

Abstract Chimeric receptors (chRecs) combining extracellular recognition domains with the T cell receptor ζ an redirect the cellular immune response of primary T-cells to tumor cells. T cell activation by chRec induces efficient cytokine release and cytotoxicity, however, it fails to mediate proliferative responses, limiting the usefulness of chRec-gene-modified T cells for adoptive immunotherapy of cancer. Inclusion of a CD28 costimulatory signaling component in the chRec endodomain enhances antigen-specific proliferation. Whereas the signal mediated by ligation of CD28 is of crucial importance for the activation of resting CD4+ T cells, further molecules with costimulatory functions have contributory roles. NKG2D is a stimulatory receptor that was first identified in NK cells, but is also expressed in cytotoxic T cells and positively modulates CD8+ T cell immune responses. We hypothesized that inclusion of the NKG2D-associated signaling domain DAP10 would enhance the capacity of chRecs to induce tumor-specific activation and proliferation of in vitro expanded effector T cells. Based on a GD2-specific scFv, we generated chRecs containing either the DAP10 signaling chain alone (14.G2a-DAP10) or combined with TCRζ 14.G2a-DAP10ζ), and expressed them in nonspecifically activated human peripheral blood T cells of three individual donors by retroviral gene transfer. As controls, T cells were transduced with 14.G2a-ζ and -CD28ζ chRec. High chRec surface expression was obtained with all four constructs (55±11%, ζ; 85±3, CD28ζ; 68±5%, DAP10; 78±1%; DAP10ζ). Immunophenotypes were dominated by a CD3+CD8+ population in all cell cultures. Whereas DAP10 alone failed to mediate specific tumor cell lysis, 51Cr release assays revealed efficient and comparable lysis of GD2+ tumor targets by T cells transduced with all ζ-containing constructs, with 49±8% (ζ), 52±7% (CD28ζ), and 52±18% (DAP10ζ) cytolysis at an effector-to-target ratio of 40:1. Intracellular cytokine secretion by chRec+ T cells was induced in response to tumor targets by 14.G2a-ζ (up to 37% IFN-γ secreting cells), CD28ζ, and DAPζ (both up to 22%), but not by DAP10 alone (0,2%). Weekly stimulation with tumor cells for 6 weeks induced only limited expansion of T cells transduced with 14.G2a-ζ (7–45fold) or with 14.G2a-DAP10 (14–26-fold). Adding CD28 or DAP10 domains significantly enhanced expansion by a comparable degree (270–483-fold and 126–436-fold, respectively). Thus, while neither CD28 nor DAP10 enhances antigen-specific cytokine secretion and cytolysis, DAP10 signaling can completely replace CD28 signaling in costimulating antigen-specific proliferation of peripheral blood T cells. DAP10-containing chRec may be a powerful new tool for adoptive immunotherapy of cancer.


2001 ◽  
Vol 16 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Orhun K. Muratoglu ◽  
Charles R. Bragdon ◽  
Daniel O. O'Connor ◽  
Murali Jasty ◽  
William H. Harris

1997 ◽  
Vol 34 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Jacques Robert ◽  
Isabelle Chretien ◽  
Chantal Guiet ◽  
Louis Du Pasquier

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3377-3377
Author(s):  
Eileen Hu ◽  
Hatice Gulcin Ozer ◽  
Arletta Lozanski ◽  
Tzyy-Jye Doong ◽  
Chi-Ling Chiang ◽  
...  

Introduction: Targeted irreversible Bruton's Tyrosine Kinase (BTK) inhibitors ibrutinib and acalabrutinib, have revolutionized treatment for chronic lymphocytic leukemia (CLL). While BTK inhibition (BTKi) achieves durable responses in 90% of patients, only 10% achieve minimal residual disease (MRD) negative status. MRD positive patients have persistent residual CD5+CD19+ tumor B cells at approximately 1-5 /mm3 in peripheral blood. These cells may represent a subpopulation of B-cell lymphocytosis pre-malignant cells or may carry a BTK C481, PLCG2, or other CLL mutation that is ultimately responsible for disease relapse. Alternatively, MRD could be derived from the original clones present at initial disease presentation that are not dependent on BTK signaling. Readily available clinical DNA sequencing and MRD monitoring techniques lack the ability to characterize these cells adequately due to their rarity in peripheral blood. To address this problem, we developed a novel method for limited-cells using fluorescence activated cell sorting in tandem with next generation sequencing (LC-FACSeq) to characterize rare tumor subpopulations in the blood and bone marrow. LC-FACSeq may be useful not only for CLL but also other leukemias. Methods: LC-FACSeq uses fluorescent activated cell sorting (FACS) to isolate pure populations of rare tumor cells after which targeted deep sequencing is performed to monitor CLL-related mutations in NOTCH1, SF3B1, and TP53, as well as genes associated with BTKi relapse and resistance: BTK and PLCG2. For validation of this method, we generated libraries from DNA isolated from FACS isolated bulk (n >15000) versus n= 50, 100, 300, or 500 CD5+/CD19+ cells from CLL patients (n=5). Results: All samples analyzed had an average read depth of 1212 (SEM=56) per gene and an average coverage uniformity of 88.24% (SEM=.01). We show that showed that 300-cell LC-FACSeq libraries demonstrated comparable variant calling and minimal noise to standard libraries generated from purified DNA from bulk cells. Using samples from patients with previously identified BTK C481S mutations, we found that both sensitivity and specificity of LC-FACSeq for BTK C481S was 100%. Furthermore, LC-FACSeq reliably amplified BTK C481S signals from subclones as small as 6 in 300 total cells (2%) when mutated tumor cells were serially diluted into BTK wild type tumor cells. In using LC-FACSeq to retrospectively analyze four independent patients who developed Ibrutinib resistance, we found that we could see the emergence of small BTKi resistant subclones as early as 10 months before clinical detection. We next extended LC-FACSeq to examine the clonal architecture of long-term (> 12 months) ibrutinib-treated MRD positive patients. Median treatment time was 5 years. BTK C481S mutations were observed in the latest available on-treatment samples of only one patient. Using LC-FACSeq we observed canonical CLL-associated clonal mutations similar to those observed in previous studies. Of the 14 MRD positive patients, 7 showed subclonal changes in TP53, NOTCH1, POT1, SF3B1, and MYD88 over the course of ibrutinib treatment although we found no correlation or consensus in these clonal shifts. Conclusion: LC-FACSeq is a highly sensitive method of characterizing clonal evolution in rare cells. Our data shows that LC-FACSeq is useful for monitoring sequential acquisition of mutations conferring therapy resistance and clonal evolution in long-term ibrutinib treated chronic lymphocytic leukemia (CLL) patients. We also observe that in most cases, MRD clones after long-term ibrutinib treatment are genetically similar to disease clones from pretreatment baseline. Compared to current MRD monitoring strategies, the main advantages of LC-FACSeq are that 1) variants can be confidently called from rare sorted tumor populations and subpopulations, 2) library generation can be completed in less than a day in a diagnostic laboratory compared to the labor-intensive protocols of traditional NGS approaches, and 3) amplicon panels can be easily customized for application to other types of leukemia and lymphoma. (EH is supported by the Graduate Pelotonia Fellowship and the NIH F30) Disclosures Bhat: Janssen: Consultancy; Pharmacyclics: Consultancy. Rogers:Janssen: Research Funding; AbbVie: Research Funding; Genentech: Research Funding; Acerta Pharma: Consultancy. Woyach:AbbVie: Research Funding; Janssen: Consultancy, Research Funding; Pharmacyclics LLC, an AbbVie Company: Consultancy, Research Funding; Karyopharm: Research Funding; Loxo: Research Funding; Morphosys: Research Funding; Verastem: Research Funding. Lozanski:Beckman Coulter: Research Funding; Stemline Therapeutics Inc.: Research Funding; Genentec: Research Funding; Boehringer Ingelheim: Research Funding. Muthusamy:Ohio State University: Patents & Royalties: OSU-2S. Byrd:Novartis: Other: Travel Expenses, Speakers Bureau; TG Therapeutics: Other: Travel Expenses, Research Funding, Speakers Bureau; BeiGene: Research Funding; Ohio State University: Patents & Royalties: OSU-2S; Janssen: Consultancy, Other: Travel Expenses, Research Funding, Speakers Bureau; Gilead: Other: Travel Expenses, Research Funding, Speakers Bureau; Ohio State University: Patents & Royalties: OSU-2S; Gilead: Other: Travel Expenses, Research Funding, Speakers Bureau; Pharmacyclics LLC, an AbbVie Company: Other: Travel Expenses, Research Funding, Speakers Bureau; Novartis: Other: Travel Expenses, Speakers Bureau; Pharmacyclics LLC, an AbbVie Company: Other: Travel Expenses, Research Funding, Speakers Bureau; TG Therapeutics: Other: Travel Expenses, Research Funding, Speakers Bureau; Acerta: Research Funding; BeiGene: Research Funding; Janssen: Consultancy, Other: Travel Expenses, Research Funding, Speakers Bureau; Genentech: Research Funding; Genentech: Research Funding; Acerta: Research Funding.


Soft Matter ◽  
2019 ◽  
Vol 15 (45) ◽  
pp. 9171-9177 ◽  
Author(s):  
Derosh George ◽  
Edwin A. Peraza Hernandez ◽  
Roger C. Lo ◽  
Marc Madou
Keyword(s):  

Polymer and carbon polyhedra are fabricated using a novel method that combines photolithography and controlled capillary folding.


2015 ◽  
Author(s):  
Matilde Saggese ◽  
Leah Ensell ◽  
Clare Vesely ◽  
Victoria Spanswick ◽  
Elena Peruzzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document