scholarly journals Bond Behavior of Concrete According to Replacement Ratio of Fly Ash and Compressive Strength of Concrete

Author(s):  
Hyung-Jib Lee ◽  
Jeong-In Suh ◽  
Sung-Won Yoo
2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


2021 ◽  
Vol 5 (1) ◽  
pp. 50
Author(s):  
Mahdi Shariati ◽  
Danial Jahed Armaghani ◽  
Manoj Khandelwal ◽  
Jian Zhou ◽  
Arameh Eyvaziyan ◽  
...  

Compressive Strength (CS) is an important mechanical feature of concrete taken as an essential factor in construction. The current study has investigated the effect of fly ash and silica fume replacement content on the strength of concrete through Artificial Neural Networks (ANNs) and Extreme Learning Machine (ELM). In this study, different ratios of fly ash with (out) extra quantity of silica fume have been tested. Water cement (w/c) ratio varies during the test. Eight input parameters including Total Cementitious Material (TCM), Silica Fume (SF) replacement ratio, coarse aggregate (ca), fly ash (FA) replacement ratio, Sewage Sludge Ash (SSA) as a combination of cement and fine aggregate replacement, water-cement ratio, High Ratio Water Reducing Agent (HRWRA) and Age of Samples (AS) and one output parameter as the CS of concrete have been investigated through ANN and ELM. Up to now, numerous experimental studies have been used to analyze the compressive strength of concrete while retrofitted with fly ash or silica fume, however, the novelty of this study is in its use of AI models (ELM, ANN). The models have been developed and their outcomes were compared through six statistical indicators (MAE, RMSE, RRMSE, WI, RMAE and R2). Subsequently, both methods were shown as reliable tools for assessing the influence of cementitious material on compressive strength of concrete, however, ANN remarkably was better than ELM. As a result, FA showed less contribution to the strength of concrete at short times, but much at later ages. As a result, the enhanced influence of low amount of SF on CS was not significant. Adding fly ash has reduced the compressive strength in short term, but increased the compressive strength in long term. Adding silica fume raises the strength in short term, but decreases the strength in longterm. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


The investigative studies on mechanical performance & behaviour, of Geopolymer Concrete (GPC) before and after the exposure to elevated temperatures (of 200 0 C -1000 0 C with an increment of 100 0 C). Indicate that the GPC Specimens Exhibited better Compressive strength at higher temperatures than that of those made by regular OPC Concrete with M30 Grade. The chronological changes in the geopolymeric structure upon exposure to these temperatures and their reflections on the thermal behaviour have also been explored. The SEM images indicate GPC produced by fly ash , metakaolin and silica fume, under alkaline conditions form Mineral binders that are not only non-flammable and but are also non-combustible resins and binders. Further the Observations drawn disclose that the mass and compressive strength of concrete gets reduced with increase in temperatures.


2020 ◽  
Vol 20 (01) ◽  
pp. 61-68
Author(s):  
Siska Apriwelni ◽  
Nugraha Bintang Wirawan

(ID) Penelitian ini membahas pengaruh kuat tekan beton mutu tinggi dengan memanfaatkan limbah fly ash dan limbah kaca. Tujuan dari penelitian ini untuk mengetahui kuat tekan beton pada masing-masing variasi, mengetahui persentase campuran beton untuk menghasilkan kuat tekan maksimum, dan mengetahui apakah fly ash dan serbuk kaca efektif digunakan secara bersamaan sebagai bahan campuran beton. Komposisi fly ash terdiri dari 5 variasi yaitu persentase 0%, 5%, 10%, 15%, dan 20%. Sedangkan untuk komposisi serbuk kaca terdiri dari 2 variasi yaitu persentase 5% dan 10%. Jumlah benda uji 30 buah silinder berukuran diameter 15 cm dan tinggi 30 cm dengan 3 benda uji untuk setiap variasi. Perencanaan campuran beton menggunakan SNI 03-2834-2000 yang dimodifikasi. Pengujian kuat tekan diuji pada umur beton 28 hari. Beton dengan fly ash 0% dan serbuk kaca 10% memiliki kuat tekan paling tinggi dibandingkan dengan beton dengan tambahan fly ash, yaitu 46,77%. Selain itu, dapat disimpulkan bahwa semakin bertambahnya jumlah persentase serbuk kaca yang digunakan menunjukkan bahwa kuat tekan beton semakin bertambah juga. Penambahan fly ash pada campuran beton mempengaruhi kuat tekan beton yang dihasilkan. Pada variasi fly ash 0% memiliki kuat tekan tertinggi baik pada saat campuran serbuk kaca 5%dan 10%. Variasi fly ash 15% adalah kondisi optimum campuran beton dengan kuat tekan beton yaitu 43,31 Mpa. Kedua limbah ini dapat dikombinasikan dan dimanfaatkan dengan baik dan digunakan dalam pembuatan beton mutu tinggi. (EN) This study discusses the effect of high quality concrete by utilizing fly ash and glass waste. The purpose of this study is to determine the compressive strength of concrete in each variation, to determine the contribution of concrete to produce compressive strength, and to find out that fly ash and glass powder are effectively used in full as a concrete admixture. Fly ash composition consists of 5 variations, namely the percentage of 0%, 5%, 10%, 15%, and 20%. While for the composition of glass powder consists of 2 variations, namely the percentage of 5% and 10%. The number of specimens is 30 cylinders with a diameter of 15 cm and a height of 30 cm with 3 specimens for each variation. Concrete mixture planning using SNI 03-2834-2000 was developed. Compressive strength testing on concrete age 28 days. Concrete with 0% fly ash and 10% glass powder have the highest compressive strength compared to concrete with additional fly ash, which is 46.77%. In addition, it can increase the amount of glass powder addition that is used to show the concrete compressive strength is increasing as well. The addition of fly ash in the concrete mixture has an effect on the compressive strength of the concrete produced. In the variation of 0% fly ash has the highest compressive strength when the glass powder mixture of 5% and 10%. The 15% fly ash variation is the optimal concrete mixture with compressive strength of 43.31 MPa. These two wastes can be combined and utilized properly and are used in making high quality concrete.  


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


2013 ◽  
Vol 634-638 ◽  
pp. 2742-2745 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This study undertook the research of size effect on compressive strength and modulus of elasticity, respectively. The parameters of this study are curing age and fly ash replacement ratio to investigate size effect of Type A (100mm x 200mm) and Type B (150mm x 300mm) specimens in high performance concrete. On this study, high performance concrete was fabricated with different FA contents of 10%, 20% and 30%. The measurements were performed on days 28 and 91.


2011 ◽  
Vol 287-290 ◽  
pp. 1201-1208 ◽  
Author(s):  
Wen Bo Zhang ◽  
Isamu Yoshitake ◽  
Tadashi Saitoh

To propose a prediction formula of compressive strength of concretes containing fly ash (FA concrete), over 1600 strength data are collected from previous studies and discussed in this study. In particular, the study focuses on developing strengths of FA concrete. The study deals with test data of concrete with wide range of FA replacement, namely 0-50% by mass of cement. Compressive strength at age of 7 days has strongly relation to the cement-water ratio, so the strength can be predicted by using only water and cement contents. In addition, early age strengths within 7 days can be estimated by using the Goral curve based on strength ratio. Strength after the age of 7 days can be predicted by using replacement ratio of fly ash because the strength ratios are proportional to the replacement ratio. Based on the findings, a simplified formula for predicting compressive strength at various ages is proposed in the paper.


Sign in / Sign up

Export Citation Format

Share Document