scholarly journals The frequency of virulent genes and antimicrobial resistance patterns of diarrheagenic Escherichia coli isolated from stools of children presenting with diarrhea in a tertiary hospital in Abakaliki, Nigeria

2020 ◽  
Vol 6 (2) ◽  
pp. 147-152
Author(s):  
Ebuka Elijah David ◽  
Muhammad Arfat Yameen ◽  
Ikechuku Okorie Igwenyi ◽  
Arthur Chinedu Okafor ◽  
Uket Nta Obeten ◽  
...  

Aim: This study was aimed to determine the virulent genes and antibiotic resistance patterns among circulating diarrheagenic Escherichia coli (DEC) pathotypes in a tertiary care health center in east of Nigeria. Materials and Methods: Diarrheal stool samples were obtained from 80 children under 5 years and E. coli was isolated and identified using standard biochemical and molecular methods. Multiplex polymerase chain reaction (PCR) was used to detect eight virulent genes of DEC. Disk diffusion method was used to determine the antibiotic susceptibility of DEC. Results: DEC infection was observed in 54 (68%) children among which ial gene for enteroinvasive E. coli (EIEC) (40% [n=22]) was commonly detected followed by eltA/eltB for enterotoxigenic E. coli (ETEC) (30% [n=16]), pCVD for enteroaggregative E. coli (EAEC) (20% [n=11]), and eaeA/bfpA for typical enteropathogenic E. coli (EPEC) (10% [n=5]). The DEC isolates phenotypically exhibited resistance for ampicillin (AMP) (44 [81%]), followed by ciprofloxacin (CIP)/ levofloxacin (LEV) (28 [52%]), cefoxitin (FOX) (11 [20%]), and amoxicillin-clavulanic acid (AMC) (6 [11%]). About 60% isolates of stable toxins-ETEC were resistant to AMC, CIP, and LEV while all the labile toxin-ETEC exhibited resistance to AMP. About 60% (n=6) resistance were seen in EAEC against ampicillin, AMC, FOX, CIP, and LEV. In EIEC, all the isolates (n=22) were resistant to AMP while 50% (n=11) were resistant to both CIP and LEV. All EPEC (n=5) were resistant to AMP, FOX, CIP, and LEV. Conclusion: High frequency of virulent ial and eltA/eltB genes for EIEC and ETEC, respectively, suggests that they are the primary etiological agents of diarrhea in children among DEC pathotypes. Resistance of DEC to more than two classes of antibiotics indicate possible emergence of multidrug resistance.

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


2021 ◽  
Vol 24 (1) ◽  
pp. 32-42
Author(s):  
M. Jajarmi ◽  
M. Askari Badouei ◽  
R. Ghanbarpour ◽  
A. Karmostaji ◽  
H. Alizade

Foodborne transmission of Shiga toxin-producing Escherichia coli (STEC) poses a threat to public health. The Clermont typing schemes (previous and revised) have been used widely to phylotype E. coli. The present study was conducted to compare the relationship of the Clermont phylogenet-ic schemes in STEC strains isolated from goats and antibiotic resistance patterns in the southeast of Iran. Overall 52 strains carrying the stx gene were used for subsequent analysis. All strains were determined by analysing the genomic DNA with a PCR-based method using the two Clermont et al. (2000, 2013) schemes. Extended spectrum beta-lactamase (ESBL) producing strains were con-firmed by the double disk-diffusion method. STEC strains were also tested for susceptibility to 20 antimicrobials agents. In the original Clermont method, the prevalent phylogroups were B1 (69.2%) and A (28.8%). The significant phylogenetic groups of strains according to the revised Clermont method were B1 (82.7%), A (13.5%) and unknown (3.8%). However, STEC strains underwent changes as noted from A to B1 (17.3%), B1 to unknown (3.8%), B1 to A (1.9%) and D to B1 (1.9%) groupings. Of the 52 stx-positive strains, two ESBL producing strains were detected. Susceptibility data showed that the most frequent resistance phenotype was related to cefazolin (90.4%), streptomycin (88.5%), ampicillin (86.5%) and oxytetracycline (82.7%) respectively. Alt-hough the overall frequency of the reassigned phylotypes was not significant, most changes oc-curred within the A phylotype. Therefore, implementation of the new method on isolates belong-ing to the A phylotype in the old method seems to be necessary to obtain accurate results.


2019 ◽  
Vol 34 (2) ◽  
pp. 61-66
Author(s):  
Sunjukta Ahsan ◽  
Mayen Uddin ◽  
Juthika Mandal ◽  
Marufa Zerin Akhter

Antibiotic resistant E. coli are prevalent in Bangladesh. The indiscriminate use of antimicrobials and ready availability of over the counter drugs are responsible for this. This study was conducted to investigate the susceptibility of clinical Escherichia coli to the antibiotics Imipenem, Ceftriaxone, Ceftazidime and Azithromycin. Kirby-Bauer disk diffusion method was used to determine sensitivity to antimicrobials. Agar based assay was employed for the detection of efflux pumps. PCR was used amplify antibiotic resistance genes.All isolates were resistant to Ceftriaxone whereas most were sensitive to Imipenem. The MICs of Ceftazidime and Azithromycin ranged between 128 μg/ml and 256 μg/ml. The prevalence of ²-lactamase producers was 57.89 % with 36.84 % of the isolates exhibiting ESBL activity. No specific correlation could be found between plasmid sizes and antibiotic resistance patterns. Efflux pump was found to be involved in Azithromycin resistance in 63.15% of the isolates. The gene for phosphotransferase, mph(A) was the most common among the macrolide modifying genes, being present in 73.68% (14/19) of the isolates followed by both erm(A) anderm(C) esterases each present in 10.53% (2/19) isolates. This study concluded that clinical isolates of E. coli in Bangladesh could be resistant to multiple classes of antibiotics through different mechanisms of resistance. Bangladesh J Microbiol, Volume 34 Number 2 December 2017, pp 61-66


2019 ◽  
Vol 16 (3(Suppl.)) ◽  
pp. 0682 ◽  
Author(s):  
MKK Et al.

The present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%).  After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL producing E. coli against antibiotics belonging to different families showed the highest resistance rates to Ampicillin (100%), Cefotaxime (97%), Cefuroxime (95%), and Ciprofoxacin (86%). Carbapenem groups of antibiotics, Meropenem (89%) and Imipenem (85%) have the highest susceptibility rate among all antibiotics used in this study. The outcome of the antimicrobial susceptibility testing of significant CTX-M- type ESBL producing E. coli could be useful to avoid failure or prolong treatments.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kiandokht Babolhavaeji ◽  
Leili Shokoohizadeh ◽  
Morteza Yavari ◽  
Abbas Moradi ◽  
Mohammad Yousef Alikhani

Background. The aims of the current study are the identification of O157 and non-O157 Shiga Toxin-Producing Escherichia coli (STEC) serogroups isolated from fresh raw beef meat samples in an industrial slaughterhouse, determination of antimicrobial resistance patterns, and genetic linkage of STEC isolates. Materials and Methods. A total of 110 beef samples were collected from the depth of the rump of cattle slaughtered at Hamadan industrial slaughterhouse. After detection of E. coli isolates, STEC strains were identified according to PCR for stx1, stx2, eaeA, and hlyA virulence genes, and STEC serogroups (O157 and non-O157) were identified by PCR. The genetic linkage of STEC isolates was analyzed by the ERIC- (Enterobacterial Repetitive Intergenic Consensus-) PCR method. The antimicrobial susceptibility of STEC isolates was detected by the disk diffusion method according to CLSI guidelines. Results. Among 110 collected beef samples, 77 (70%) were positive for E. coli. The prevalence of STEC in E. coli isolates was 8 (10.4%). The overall prevalence of O157 and non-O157 STEC isolates was 12.5% (one isolate) and 87.5% (7 isolates), respectively. The hemolysin gene was detected in 25% (2 isolates) of STEC strains. Evaluation of antibiotic resistance indicated that 100% of STEC isolates were resistant to ampicillin, ampicillin-sulbactam, amoxicillin-clavulanic acid, and cefazolin. Resistance to tetracycline and ciprofloxacin was detected in 62.5% and 12.5% of isolates, respectively. The analysis of the ERIC-PCR results showed five different ERIC types among the STEC isolates. Conclusion. The isolation of different clones STECs from beef and the presence of antibiotic-resistant isolates indicate that more attention should be paid to the hygiene of slaughterhouses.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
S. A. Omolajaiye ◽  
K. O. Afolabi ◽  
B. C. Iweriebor

Background. Diarrhea has been reported as the leading cause of childhood mortality and morbidity globally but with disproportionate impacts in developing nations. Among bacterial etiologic agents of diarrhea, diarrheagenic Escherichia coli is the main cause of the disease among children under the age of 5 years. This study is aimed at determining the prevalence and antibiogram pattern of diarrheagenic Escherichia coli (DEC) pathotypes associated with diarrhea cases in the study area. Methods. A total of 120 presumptive isolates of E. coli were obtained from diarrheal stool samples from male and female patients below 12 years of age using chromogenic agar. Confirmation of the isolates and screening for virulence genes were determined by polymerase chain reaction (PCR) while antimicrobial susceptibility testing was performed using the disk diffusion method. The presence of antibiotic resistance genes to chloramphenicol and tetracycline among the confirmed isolates was also profiled by PCR based on the observed phenotypic resistance pattern. Results. Of the 120 presumptive isolates, 88.3% (106/120) were confirmed as E. coli through PCR. The molecular pathotyping of the confirmed isolates showed their distribution as 41% (43/106) of diffusely adhering E. coli (DAEC), 17% (18/106) of enterohemorrhagic E. coli (EHEC), 17% (18/106) of enteropathogenic E. coli (EPEC), and 10% (11/106) of enteroinvasive E. coli (EIEC), while enteroaggregative E. coli (EAEC) and enterotoxigenic E. coli (ETEC) were not detected, and the remaining 15% did not belong to any pathotype. Notably, high resistance of the isolates to commonly used antimicrobials was observed as follows: ampicillin (98%), chloramphenicol (94%), trimethoprim-sulfamethoxazole (96%), and tetracycline (90.6%), while a relatively low number of the confirmed isolates were resistant to ciprofloxacin (45%) and imipenem (36%). In addition, 94% of the isolates that exhibited phenotypic resistance against chloramphenicol harbored the catA1 resistance gene while 89% that showed resistance to tetracycline had tetA genes. Conclusions. These findings showed that DEC could be considered as the leading etiologic bacterial agent responsible for diarrhea in the study community, and the observable high degree of resistance of the isolates to antimicrobial agents is of huge significance, calling for stakeholders to adopt and consolidate the existing antimicrobial stewardship scheme of the government, in order to ensure an uncompromised public health.


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Eman Jassim Mohammed ◽  
Mohammed Allami ◽  
Mohammadreza Sharifmoghaddam ◽  
Masoumeh Bahreini

Background: The O-antigen is one of the uropathogenic Escherichia coli (UPEC) virulence factors used as a biomarker to classify E. coli strains. Objectives: In this study, the relationship between antibiotic resistance patterns and O-serogroups was investigated in UPEC strains isolated from patients with urinary tract infections (UTIs) in southern Iraq. Methods: Methods: A total of 100 UPEC isolates from the urine specimens of patients with UTIs within the age range of 4 months to 78 years in various southern Iraqi hospitals were collected (May 2017 to January 2018) and confirmed using biochemical tests (e.g., Analytical Profile Index 20E). Antibiotic susceptibility tests were performed using the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. The multiple polymerase chain reaction technique was applied to investigate the prevalence of O-serogroups. Results: Results: The most frequent serogroups in the E. coli isolates were O8 (27.7%) and O25 (24.4%); however, serogroup O83 was not observed in the samples. Serogroups O75, O6, O16, and O18 had the lowest frequency (1.1%) among the examined isolates. Furthermore, 10% of the isolates did not belong to any of the examined serogroups. The phenotypic tests showed that the highest and the lowest resistance belonged to piperacillin (92%) and imipenem (5%), respectively. Serogroups O4 and O21 showed the highest drug resistance; nevertheless, serogroups O75, O18, and O1 showed the lowest drug resistance. Additionally, 94% of the isolates were resistant to three or more classes of antibiotics. Conclusions: Conclusion: According to the results, UPEC isolates showed high resistance to common antibiotics; however, they were sensitive to imipenem and amikacin. Serogroups O8 and O25 were the most common among UPEC isolates. Moreover, O4 and O21 showed the highest drug resistance. There was a direct relationship between antimicrobial resistance and O-serogroups in UPEC isolates.


2020 ◽  
Author(s):  
Kun Chen ◽  
Guoliang Yang ◽  
Wenping Li ◽  
Mingcheng Li

Abstract Background:Concerns are increasing over the importance of the hospital intensive care units (ICU) for the transmission of extended spectrum-β-lactamase (ESBLs) -producing Enterobacteriaceae. We reported the clinical characteristics and epidemiology of ESBLs isolates collected from a tertiary care hospital in China. Methods:Escherichia coli(E. coli)and Enterobacter cloacae (E. cloacae)isolates from ICU infection samples were isolated and identified. Antimicrobial susceptibility profiles and production of ESBLs were determined by using the disk diffusion method and the broth microdilution method. Clonality of isolates was determined by ERIC-PCR techniques. Results:From the included the 223 strains isolated from hospitalized patients with nosocomial infections in ICU during 2016 to 2018, the majority of isolates belonged to Gram-negative Enerobacteriaceae including E. coli (46.6% of all strains), and E. cloacae (46.2% of all strains). 63.25% of samples were separated from sputum or tracheal secretions. All of 207 isolates, ESBL-screen positive E. coli was 45.2% (47/104), and 44.7% (46/103) for E. cloacae. Resistance rates of ESBLs-producing E. coli and E. cloacae isolates were 95.5%-91.3% for ampicillin, 80.6%-76.1% for ampicillin/azobactam, 88.1%-28.3% for ciprofloxacin, 89.6%-15.2% for levofloxacin, 34.3%-45.7% for netilmicin, 82.1%-41.3% for compound sulfamethoxazole, 20.9%-43.5% for amikacin, 58.2%-37.0% for gentamicin, 20.9%-69.6% for piperacillin/tazobactam. All of ESBLs-producer isolates resistant to cefazolin, cefuroxime, ceftazidime, ceftriaxone, cefepime in additon to aztreonam were 100%, whereas the susceptibilities of isolates to imipenem and meropenem were 100%. Results of ERIC-PCR in all of ESBLs-producing E. coli isolates exhibited 11 distinct patterns using a similarity coefficient of 0.8. And one distinct ERIC profiles were observed amongst 46 strains of ESBLs-producing E. cloacae. ERIC profiles demonstrated an outbreak of nosocomial infection and ESBLs-producing E. coli and E. cloacae prevalent in the ICU of this hospital.Conclusions:Our data indicate that the ESBLs-producing E. coli and E. cloacae clones are circulating in the ICU and constitute a major source for further disseminating in this hospital. It is necessary to increase surveillance and development of adequate prevention strategies.


2019 ◽  
Author(s):  
omid zarei ◽  
Leili Shokoohizadeh ◽  
Hadi Hossainpour ◽  
Mohammad Yousef Alikhani

Abstract Objective: Shiga toxin-producing Escherichia coli (STEC) is known as a crucial zoonotic foodborne pathogen. Totally, 257 raw chicken meat were collected from markets in Hamadan, west of Iran. The samples were cultured on selective media and the virulence genes of E. coli isolates were analyzed by PCR. The antibiotic resistance patterns were determined by the disk diffusion method. The genetic relatedness of the E. coli O157 isolates was analyzed by ERIC-PCR. Results: Totally, 93 (36%; 95% CI 41.9- 30.1%) isolates were identified as E. coli. Based on microbiological tests, 36 (38.7%; 95% CI 48.6-28.8), 7 (7.5%; 95% CI 12.8-2.2%), and 12 (12.9%; 95% CI 19.7- 6.1%) of the E. coli isolates were characterized as STEC, Enteropathogenic E. coli, and attaching and effacing E. coli (AEEC) strains, respectively. A high level of resistance to nalidixic acid (91.4%; 95% CI 97.1- 85.7%), tetracycline (89.8%; 95% CI 96.2-83.5%), ampicillin (82.8%; 95% CI 90.2-75.1%), and sulfametoxazole-trimotoprime (71%; 95% CI 80.2-61.8%) was detected among the E. coli isolates. The analysis of ERIC-PCR results showed five different ERIC types among the E. coli O157 isolates. Based on findings. Control and check-up of poultry meats should be considered as a crucial issue for public health.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Sign in / Sign up

Export Citation Format

Share Document