scholarly journals Adsorption of Acid Blue 113 using Nanocarbon Spheres and its Kinetic and Isotherm Studies

2019 ◽  
Vol 31 (8) ◽  
pp. 1653-1660
Author(s):  
V. Priya ◽  
S.K. Krishna ◽  
V. Sivakumar ◽  
P. Sivakumar

Nanocarbon spheres were prepared from the stems of Alternanthera sessilis. Their characterization studies were performed and the application of nanocarbon spheres for the adsorption of acid blue 113 from the aqueous solution was studied. Effect of pH of effluent, effect of initial acid blue 113 concentration and the effect of solution temperature were analyzed. Pseudo-first order model, pseudo-second order model, Elovich model, Intra-particle diffusion model, Langmuir model, Freundlich model and thermodynamic parameters were used to evaluate the percentage and the amount of acid blue 113 dye removed. The kinetics follows multi-order and Langmuir type of isotherm. The ΔG, ΔH and ΔS parameters which relate to sorption energy were also evaluated. The outcome of the study indicates that nanocarbon sphere is a potential material for the sorption of acid blue 113 with good efficiency.

2021 ◽  
Vol 19 (9) ◽  
pp. 46-54
Author(s):  
Makarim A. Mahdi ◽  
Aymen A.R. Jawad ◽  
Aseel M. Aljeboree ◽  
Layth S. Jasim ◽  
Ayad F. Alkaim

The AAc/GO nanocomposite hydrogel was successfully employed as a polymeric Nano sorbent of the removal efficiency of M G dye from the model. The complication of the mechanism of the adsorption system was completely exposed by examining how solution pH affects adsorption, Ionic strength isotherm models, kinetic models, and thermodynamics. The adsorption of the MG dye was greatly dependent on the solution pH. The Freundlich model has been demonstrated to be the most accurate in describing the MG dye sorption, whilst the Langmuir model was shown to be the least accurate. Additionally, these integrated mechanisms fit nicely within the framework of a pseudo-second-order model. Additionally, the contact time at equilibrium short (ten minutes) required to MG removes demonstrates the AAc/GO nanocomposite hydrogel can be considered an efficient and potentially useful adsorbent for MG removal from industrial effluents.


2020 ◽  
Vol 81 (10) ◽  
pp. 2270-2280
Author(s):  
Yonggang Xu ◽  
Tianxia Bai ◽  
Yubo Yan ◽  
Yunfeng Zhao ◽  
Ling Yuan ◽  
...  

Abstract It is of great significance to remove Cr(VI) from water as a result of its high toxicity. Biochar from corn straw was modified by different acids (HNO3, H2SO4 and H3PO4) to remove Cr(VI) from aqueous solution. To estimate the removal mechanisms of Cr(VI) by the acid-modified biochars, batch experiments were performed in the light of contact time, Cr(VI) concentration, and pH, and the characteristics of acid-modified biochars before and after Cr(VI) adsorption were investigated by Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The adsorption kinetics of Cr(VI) by acid-modified biochars were consistent with the pseudo-second-order model, and the adsorption isotherm obeyed the Freundlich model. Furthermore, the acid- modified biochars could supply more oxygen-containing functional groups (-COOH and -OH) as electron donor (e−) and hydrogen ion (H+) to enhance the reduction of Cr(VI) to Cr(III), resulting in enhanced removal of Cr(VI). HNO3-modified biochar exhibited the highest removal efficiency of Cr(VI). In general, the acid modifition of biochar was an effective method to increase the removal of Cr(VI).


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mahjoub Jabli ◽  
Faouzi Aloui ◽  
Béchir Ben Hassine

Considered as ligands due to the presence of donor atoms in their chemical structures, and being also among the major pollutants of water, Eriochrome Black B (Erio), Calmagite (Calma) and Acid Blue 25 (AB25) were successfully immobilized on cellulose-chitosan microspheres loaded with copper ions. Prepared supports were characterized by Fourier Transform Infra-Red (FTIR) spectral study and Thermogravimetic analysis (TGA). The effect of experimental factors during dye immobilization such as pH, contact time, temperature, and initial dye concentration were studied. The experiments demonstrate that the adsorption capacities of dyes on [Cu(II)/cellulose-chitosan] are much higher than the unloaded microspheres. This indicates that these dyes can act as efficient ligands for coordinating metals already involved in [cellulose-chitosan]. At least, in the case of AB25, a 60% of difference in target removal was achieved at equilibrium. The kinetic adsorption fitted well to the intra-particle diffusion model and the corresponding rate constants were obtained. In addition, the interpretation of the equilibrium sorption data complies well with the Freundlich model. The thermodynamic parameters were also determined and the enthalpy change (ΔH&Deg;) was found to be low, between −5.93 and −20.68 Kj.mol-1, indicating that the adsorption phenomenon is exothermic and physical. A probable mechanism of the Dye/Copper(II)/cellulose-chitosan complex is also proposed.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2843
Author(s):  
Hany El-Hamshary ◽  
Abeer S. Elsherbiny ◽  
Mohamed H. El-Newehy ◽  
Mohamed E. EL-Hefnawy

Surface modification of sodium montmorillonite (Na+-Mt) was performed using antimicrobial agents to produce an ecofriendly nanocomposite. The adsorption performance of the nanocomposite has been evaluated for the removal of Acid Blue 25 dye (AB25) as a model organic pollutant from wastewater. Sodium montmorillonite (Na+-Mt) was modified with three different ionene compounds through ion exchange, and further modified through reaction with polyaspartate to provide three ecofriendly nanocomposites (denoted ICP-1–3). The nanocomposites were characterized using FTIR, PXRD, TEM, SEM, and BET surface area. The adsorption isotherm of AB25 onto ICP-1, ICP-2 and ICP-3 was analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) models. The adsorption isotherm was found to be best fitted by a Freundlich model. The thermodynamic parameters were calculated. The kinetics of the adsorption data were analyzed and the adsorption behavior was found to obey pseudo-second-order kinetics, and the intraparticle diffusion model. The adsorption mechanism was studied by FTIR.


2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mahjoub Jabli ◽  
Faouzi Aloui ◽  
Béchir Ben Hassine

Considered as ligands due to the presence of donor atoms in their chemical structures, and being also among the major pollutants of water, Eriochrome Black B (Erio), Calmagite (Calma) and Acid Blue 25 (AB25) were successfully immobilized on cellulose-chitosan microspheres loaded with copper ions. Prepared supports were characterized by Fourier Transform Infra-Red (FTIR) spectral study and Thermogravimetic analysis (TGA). The effect of experimental factors during dye immobilization such as pH, contact time, temperature, and initial dye concentration were studied. The experiments demonstrate that the adsorption capacities of dyes on [Cu(II)/cellulose-chitosan] are much higher than the unloaded microspheres. This indicates that these dyes can act as efficient ligands for coordinating metals already involved in [cellulose-chitosan]. At least, in the case of AB25, a 60% of difference in target removal was achieved at equilibrium. The kinetic adsorption fitted well to the intra-particle diffusion model and the corresponding rate constants were obtained. In addition, the interpretation of the equilibrium sorption data complies well with the Freundlich model. The thermodynamic parameters were also determined and the enthalpy change (ΔH°) was found to be low, between −5.93 and −20.68 Kj.mol-1, indicating that the adsorption phenomenon is exothermic and physical. A probable mechanism of the Dye/Copper(II)/cellulose-chitosan complex is also proposed.


2013 ◽  
Vol 726-731 ◽  
pp. 1922-1925 ◽  
Author(s):  
Lian Ai ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Si Zhao Zhang

The sorptive potential of sunflower straw (≤125 μm) for Sr2+ from aqueous solution was evaluated. Batch adsorption experiments were carried out as a function of solution pH, adsorbent dosage, Sr2+ concentration and contact time. FT-IR spectra and SEM of sunflower straw were employed to explore the functional groups available for the binding of Sr2+ and morphology of the adsorbent. Maximum uptake capacity of sunflower straw was 17.48 mg/g occurred at around pH 3-7. The adsorption equilibrium can be achieved within 5 min and kinetic data were fitted well to pseudo-second-order model. The Langmuir and Freundlich models were applied to describe isotherm sorption data. The Langmuir model gave an acceptable fit than Freundlich model.


2017 ◽  
Vol 12 (10) ◽  
pp. 4424-4439
Author(s):  
Prof Dr. Ahmed Zaky Sayed

In this work, an environmental friendly management process was achieved to solve solid and liquid hazardous contaminants in our environment. In this case, a granular carbon (gAC) sorbent impregnated with SiO2 aerogels as composite (gAC/SiO2) was synthesized from the rceycling of palm-date pits solid waste products to remediate wastewater solution contaminated with Astrazon pink FG cationic dye. The Astrazon dye adsorption onto the gAC/SiO2 was investigated by compared to gAC sorbent alone using a batch system with respect to initial dye concentration, pH, contact time, solution temperature and adsorbents dosage. It was found the amount of adsorbed dye was strongly depended on pH with low significant important of temperatures levels range from 298 to 318 K. The prepared gAC/SiO2 aerogels composite exhibits high efficiency for Astrazon dye adsorption by approximately 1.5 times than that of gAC alone. The equilibrium adsorption states could be achieved in 6 h when using gAC/SiO2 comparable to 12 h by gAC for the different initial dye concentrations. The adsorption kinetics were  found to best described by the pseudo-second order model (PSOM) and pseudo-first order (PFOM)  kinetic models respectively, when using gAC and gAC/SiO2 sorbents, and poorest-fit with Elvoich equation as confirmed by nonlinear chi-square error test and determination coefficient values. The equilibrium isotherm study indicated that dye adsorption data were analyzed and fitted well by the nonlinear expressions of both Langmuir and Langmuir-Freundlich models compared to Freundlich, Temkin and Redlich–Petersonmodels. The maximum monolayer Astrazon dye adsorption was estimated to be 185.59 and 256.02 µmol/g by gAC and gAC/SiO2 adsorbents. The positive values of the enthalpy (ΔH°) and negative Gibbs free energy (ΔG°) changes indicate an endothermic as well as feasible and spontaneous nature of the adsorption process respectively.


Author(s):  
Dorota Kołodyńska ◽  
Aleksandra Łyko ◽  
Marzena Gęca ◽  
Zbigniew Hubicki

<p>Lately there has been observed the increased presence of chlorates(VII) in the natural environment which can affect human health negatively. Therefore the removal of chlorate(VII) ions using the gel type resin functionalized with the tri-n-butyl ammonium (Dowex<sup>™</sup>PSR-2) from waters was studied. The main aim was to evaluate the effects of experimental conditions including contact time, initial solution concentration, pH and temperature on chlorate(VII) ions removal as well as the anion exchanger properties on chlorate(VII) ions sorption. It was found that only the pseudo second order model described the experimental data well and the intraparticle diffusion was not the rate-limiting step. According to the Freundlich model, the q<sub>e</sub> value was to be 69.26 mg/g at optimum conditions (pH 7.0 at 25 <sup>o</sup>C).<strong></strong></p>


2020 ◽  
Vol 10 (10) ◽  
pp. 3437
Author(s):  
Jude Ofei Quansah ◽  
Thandar Hlaing ◽  
Fritz Ndumbe Lyonga ◽  
Phyo Phyo Kyi ◽  
Seung-Hee Hong ◽  
...  

We assessed the applicability of rice husk (RH) to remove cationic dyes, i.e., methylene blue (MB) and crystal violet (CV), from water. RH thermally treated at 75 °C showed a higher adsorption capacity than that at high temperatures (300–700 °C). For a suitable CV-adsorption model, a pseudo-first-order model for MB adsorption was followed by the kinetics adsorption process; however, a pseudo-second-order model was then suggested. In the qt versus t1/2 plot, the MB line passed through the origin, but that of CV did not. The Langmuir isotherm model was better than the Freundlich model for both dye adsorptions; furthermore, the adsorption capacity for MB and CV was 24.48 mg/g and 25.46 mg/g, respectively. Thermodynamically, the adsorption of both MB and CV onto the RH was found to be spontaneous and endothermic. This adsorption increased insignificantly on increasing the solution pH from 4 to 10. With an increasing dosage of the RH, there was an increase in the removal percentages of MB and CV; however, adsorption capacity per unit mass of the RH was observed to decrease. Therefore, we conclude that utilizing RH as an available and affordable adsorbent is feasible to remove MB and CV from wastewater.


Author(s):  
Qiaoqiao Teng ◽  
Shufeng Ma ◽  
Mengyi Ni ◽  
Jiang Liu ◽  
Jinlei Yang ◽  
...  

Abstract A polyamine functionalized polystyrene resin (PSATA) was prepared via condensation reaction of acetylated polystyrene resin with triethylenetetramine, which, upon NaBH4 reduction, produced PSATAR. In comparison with the PSATA, the PSATAR with more flexible amine groups shows improved structural properties, and the equilibrium adsorption capacities of phenol, 2-nitrophenol (ONP) and 2,4-dinitrophenol (DNP) in wastewater were up to 1.073, 1.832 and 1.901 mmol/g, respectively. Their adsorption isotherms fit well with the Freundlich model, indicating a multilayer, heterogeneous adsorption nature. Kinetic studies indicated that the adsorption of phenolic compounds conforms to the pseudo-second-order kinetics with the adsorption rate controlled by film diffusion for ONP and DNP, and intra-particle diffusion in the later stage for phenol.


Sign in / Sign up

Export Citation Format

Share Document