Synthesis, Characterization and Adsorption Studies of a Graphene Oxide/Polyacrylic Acid Nanocomposite Hydrogel

2021 ◽  
Vol 19 (9) ◽  
pp. 46-54
Author(s):  
Makarim A. Mahdi ◽  
Aymen A.R. Jawad ◽  
Aseel M. Aljeboree ◽  
Layth S. Jasim ◽  
Ayad F. Alkaim

The AAc/GO nanocomposite hydrogel was successfully employed as a polymeric Nano sorbent of the removal efficiency of M G dye from the model. The complication of the mechanism of the adsorption system was completely exposed by examining how solution pH affects adsorption, Ionic strength isotherm models, kinetic models, and thermodynamics. The adsorption of the MG dye was greatly dependent on the solution pH. The Freundlich model has been demonstrated to be the most accurate in describing the MG dye sorption, whilst the Langmuir model was shown to be the least accurate. Additionally, these integrated mechanisms fit nicely within the framework of a pseudo-second-order model. Additionally, the contact time at equilibrium short (ten minutes) required to MG removes demonstrates the AAc/GO nanocomposite hydrogel can be considered an efficient and potentially useful adsorbent for MG removal from industrial effluents.

2013 ◽  
Vol 726-731 ◽  
pp. 1922-1925 ◽  
Author(s):  
Lian Ai ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Si Zhao Zhang

The sorptive potential of sunflower straw (≤125 μm) for Sr2+ from aqueous solution was evaluated. Batch adsorption experiments were carried out as a function of solution pH, adsorbent dosage, Sr2+ concentration and contact time. FT-IR spectra and SEM of sunflower straw were employed to explore the functional groups available for the binding of Sr2+ and morphology of the adsorbent. Maximum uptake capacity of sunflower straw was 17.48 mg/g occurred at around pH 3-7. The adsorption equilibrium can be achieved within 5 min and kinetic data were fitted well to pseudo-second-order model. The Langmuir and Freundlich models were applied to describe isotherm sorption data. The Langmuir model gave an acceptable fit than Freundlich model.


2020 ◽  
Vol 10 (10) ◽  
pp. 3437
Author(s):  
Jude Ofei Quansah ◽  
Thandar Hlaing ◽  
Fritz Ndumbe Lyonga ◽  
Phyo Phyo Kyi ◽  
Seung-Hee Hong ◽  
...  

We assessed the applicability of rice husk (RH) to remove cationic dyes, i.e., methylene blue (MB) and crystal violet (CV), from water. RH thermally treated at 75 °C showed a higher adsorption capacity than that at high temperatures (300–700 °C). For a suitable CV-adsorption model, a pseudo-first-order model for MB adsorption was followed by the kinetics adsorption process; however, a pseudo-second-order model was then suggested. In the qt versus t1/2 plot, the MB line passed through the origin, but that of CV did not. The Langmuir isotherm model was better than the Freundlich model for both dye adsorptions; furthermore, the adsorption capacity for MB and CV was 24.48 mg/g and 25.46 mg/g, respectively. Thermodynamically, the adsorption of both MB and CV onto the RH was found to be spontaneous and endothermic. This adsorption increased insignificantly on increasing the solution pH from 4 to 10. With an increasing dosage of the RH, there was an increase in the removal percentages of MB and CV; however, adsorption capacity per unit mass of the RH was observed to decrease. Therefore, we conclude that utilizing RH as an available and affordable adsorbent is feasible to remove MB and CV from wastewater.


2012 ◽  
Vol 9 (3) ◽  
pp. 1266-1275 ◽  
Author(s):  
J.Raffiea Baseri ◽  
P.N. Palanisamy ◽  
P. Sivakumar

In this research, Polyaniline coated sawdust (Polyaniline nano composite) was synthesized via direct chemical polymerization and used as an adsorbent for the removal of acid dye (Acid Violet 49) from aqueous solutions. The effect of some important parameters such as pH, initial concentration of dye, contact time and temperature on the removal efficiency was investigated in batch adsorption system. The adsorption capacity of PAC was high (96.84 %) at a pH of 3-4. The experimental data fitted well for pseudo second order model. Langmuir model is more appropriate to explain the nature of adsorption with high correlation coefficient. The Energy of activation from arrehenius plot suggested that the adsorption of AV49 onto PAC involves physisorption mechanism.


2021 ◽  
Author(s):  
Imane Toumi ◽  
Halima Djelad ◽  
Faiza Chouli ◽  
Benyoucef Abdelghani

Abstract In this research, a simple oxidation chemical process was applied for the synthesis of novel PANI@ZnO nanocomposite. The prepared nanocomposites were characterized by XPS, XRD, FTIR, SEM, TGA and N2 adsorption-desorption isotherms. Thereby, PANI@ZnO highest SBET values (about 40.84 m2.g− 1), total mesoporous volume (about 3.214 cm3.g− 1) and average pore size (about 46.12 nm). Afterwards, the prepared nanomaterial was applied as novel nanoadsorbent for the adsorption of Congo Red (CR) and Methylene Blue (MB) dyes from aqueous solutions at 298 K and pH 5.0. Besides, the pseudo-second-order model was obtained the best for the adsorption of both dyes. In the case of isotherm models, the Freundlich model showed the best fit. After removal, the spent adsorbent was regenerated. With the regeneration repeated five cycles, the PANI@ZnO regeneration efficiency remained at a very adequate level.


2014 ◽  
Vol 970 ◽  
pp. 7-11 ◽  
Author(s):  
Siti Raihan Zakaria ◽  
Megat Ahmad Kamal Megat Hanafiah ◽  
Siti Norhafiza Mohd Khazaai ◽  
Zurhana Mat Hussin ◽  
Wan Khaima Azira Wan Mat Khalir ◽  
...  

Kenaf (Hibiscus cannabinus) is a hardy crop that has wide industrial applications such as insulator, paper, carpet padding, bedding and a good adsorbent for oil. This study investigated the ability of carbon disulfide (CS2) modified kenaf (CMK) to remove toxic Pb (II) from waste water. Adsorbent characterization was carried out by Field Emission Scanning Electron Microscope and Energy Dispersive X-ray Spectroscope (FESEM-EDX) analysis. The adsorption kinetic data was well described by pseudo-second-order model and the adsorption isotherm study indicated that Langmuir model fitted well with the experimental data than the Freundlich model. Based on the Langmuir model, the maximum adsorption capacities of Pb (II) (qmax) was 63.3 mg g-1 .This study suggested that CMK has a good potential to be used as an adsorbent material for Pb (II) removal from aqueous solutions.


Author(s):  
I.G. Shaikhiev ◽  
S.V. Sverguzova ◽  
K.I. Shaikhieva ◽  
A.V. Svyatchenko ◽  
N.A. Miroshnichenko

The literature data on the use of biomass and waste from the processing of melons (pumpkin, watermelon, melon, cucumber) as sorption materials for various pollutants removing from aquatic environments are summarized. It was determined that dried shells of melons and gourds are effective sorption materials for the extraction of heavy metal ions and dyes. The seeds of large fruits of melons (pumpkin, watermelon, melon), as well as their shells, also showed good sorption performance for heavy metal ions and dyes. It was revealed that most of the isotherms of the adsorption of pollutants on the processing of melons and gourds waste are most accurately described by the Langmuir model, less often by the Freundlich model, singularly by the Temkin or Dubinin-Radushkevich models. It is determined that the process kinetics in all cases follows the pseudo-second order model. To increase the adsorption characteristics of the components of melons and gourds for various pollutants, the materials were modified with various chemical reagents.


2016 ◽  
Vol 70 (6) ◽  
pp. 695-705 ◽  
Author(s):  
Katarina Antic ◽  
Marija Babic ◽  
Jovana Vukovic ◽  
Antonije Onjia ◽  
Jovanka Filipovic ◽  
...  

A series of poly(2-hydroxyethyl acrylate-co-itaconic acid), P(HEA/IA), hydrogels with different HEA/IA ratio, were synthesized using free radical crosslinking/copolymerization and investigated as sorbents for Pb2+ ions from aqueous solutions. Hydrogels were characterized using DMA, FTIR, DSC, SEM and AFM. The adsorption was found to be highly dependent on hydrogel composition, solution pH, sorbent weight, ionic strength and contact time. Five isotherm models, Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich, were applied to the sorption data. The best fit was obtained with Redlich-Peterson isotherm. The separation factor, RL, value indicated favorable sorption for Pb2+ ions. The maximum sorption capacities were 392.2 and 409.8 mg/g for P(HEA/2IA) and P(HEA/10IA), respectively. Kinetic data showed best fit with pseudo-second-order model. Thermodynamic studies revealed that the reaction was exothermic and proceeds with a decrease in entropy. Moreover, P(HEA/IA) hydrogel showed the most pronounced sorption toward Pb2+ ions from environment containing Cu2+, Zn2+, Cd2+, Ni2+ and Co2+ ions. Sorption/desorption experiments, showed that the P(HEA/IA) hydrogels could be reused without significant loss of the initial properties even after three adsorption-desorption cycles.


2015 ◽  
Vol 6 (3) ◽  
pp. 430-436 ◽  
Author(s):  
Ke Xu ◽  
He Tao ◽  
Tong Deng

In this work, magnetic Fe-Cu bimetal oxide modified fly ash was used to remove phosphate from coating wastewater. The influences of pH, dosage amount and adsorption time on the removal of phosphate were investigated. The experimental results showed that pH had a significant effect on the adsorption of phosphate. The removal percentage of phosphate reached a maximum at pH 10. The removal efficiency of phosphate increased with the increase in adsorbent dosage. A kinetic study showed that the phosphate adsorption was well described by a pseudo second order model. The adsorption isotherm of phosphate could be described by the Langmuir model and Freundlich model. The Langmuir maximum capacity Q0 was 12.69 mg/g and the value of n of the Freundlich model was 3.82. The experimental results indicated that magnetic Fe-Cu bimetal oxide modified fly ash was a potential adsorbent for the removal of phosphate from the wastewater.


2012 ◽  
Vol 65 (3) ◽  
pp. 490-495 ◽  
Author(s):  
C. H. Wu ◽  
C. Y. Kuo ◽  
C. H. Yeh ◽  
M. J. Chen

In this study, C.I. Reactive Red 2 (RR2) was removed from aqueous solutions by chitin. Exactly how the RR2 concentration, chitin dosage, pH, and temperature affected adsorption of RR2 by chitin was then determined. After reaction for 120 min, the amount of 10 and 20 mg/L RR2 absorbed onto chitin was 5.7 and 7.5 mg/g, respectively. The adsorption percentage increased from 56 to 94% when the chitin dosage was increased from 1.5 to 2.5 g/L. Experimental results indicated that the pseudo-second-order model best represents adsorption kinetics. Adsorption of RR2 increased as the temperature increased; however, it decreased with an increased pH. Experimental results further demonstrated that the Freundlich model is superior to the Langmuir model in fitting experimental isotherms. The ΔH0 and ΔS0 were 16.34 kJ/mol and 152.10 J/mol K, respectively. ΔH0 suggested that adsorption of RR2 onto chitin was via physisorption.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 32 ◽  
Author(s):  
Changgil Son ◽  
Wonyeol An ◽  
Geonhee Lee ◽  
Inho Jeong ◽  
Yong-Gu Lee ◽  
...  

This study has evaluated the removal efficiencies of phosphate ions (PO43−) using pristine (TB) and chemical-activated tangerine peel biochars. The adsorption kinetics and isotherm presented that the enhanced physicochemical properties of TB surface through the chemical activation with CaCl2 (CTB) and FeCl3 (FTB) were helpful in the adsorption capacities of PO43− (equilibrium adsorption capacity: FTB (1.655 mg g−1) > CTB (0.354 mg g−1) > TB (0.104 mg g−1)). The adsorption kinetics results revealed that PO43− removal by TB, CTB, and FTB was well fitted with the pseudo-second-order model (R2 = 0.999) than the pseudo-first-order model (R2 ≥ 0.929). The adsorption isotherm models showed that the Freundlich equation was suitable for PO43− removal by TB (R2 = 0.975) and CTB (R2 = 0.955). In contrast, the Langmuir equation was proper for PO43− removal by FTB (R2 = 0.987). The PO43− removal efficiency of CTB and FTB decreased with the ionic strength increased due to the compression of the electrical double layer on the CTB and FTB surfaces. Besides, the PO43− adsorptions by TB, CTB, and FTB were spontaneous endothermic reactions. These findings demonstrated FTB was the most promising method for removing PO43− in waters.


Sign in / Sign up

Export Citation Format

Share Document