scholarly journals Isolation of Kaempferol from Vietnamese Ginkgo biloba Leaves by Preparative Column Chromatography

2020 ◽  
Vol 32 (3) ◽  
pp. 515-518
Author(s):  
Tuong Van Nguyen ◽  
Vinh Dinh

The aim of this research was to develop a simple procedure to isolate kaempferol from Ginkgo biloba leaves extract. Flavonoids present in Ginkgo biloba leaves were extracted by 96 % ethanol. These flavonol glycosides which were hydrolyzed in the presence of HCl to convert to aglycones. The flavonol aglycones were extracted by the hydrolysis of solution with ethyl acetate which was evaporated to dryness under reduced pressure to obtain concentrated flavonol aglycones (C2). Flavonol aglycones were then purified by preparative column chromatography with a mobile phase composed of petroleum ether-ethyl acetate to acquire fraction C3. The recrystallization of fraction C3 in acetone realizes to have an amorphous sediment as fraction C4 that was supposed to be a mixture of kaempferol, quercetin and isorhamnetin. Kaempferol in this sediment was purified by column chromatography with a mobile phase composed of CHCl3-MeOH to achieve a fraction denoted as fraction C5. The isolated fraction C5 was assigned by its purity and structure by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and spectroscopic data analyses.

2001 ◽  
Vol 47 ◽  
pp. 9-14
Author(s):  
Svetlana Kulevanova ◽  
Marina Stefova ◽  
Tatjana Kadifkova Panovska ◽  
Jasmina Tonic ◽  
Trajce Stafilov

Assay of flavonoids in extracts of seven Thymus L. (Lamiaceae) species from Macedonia including identification and quantification was performed. Extracts obtained after hydrolysis of air dried samples (A1) were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Luteolin and apigenin were identified in comparison to authentic standard substances. The content of total flavonoids in plant samples determined by UV-Vis spectrometry (with AlCl3) ranged from 0.05-0.13 %. Two other extracts were prepared by extraction with a mixture of ethanol:water (7:3, V/V), evaporation until only water remained and extraction first with diethylether (A2) and secondly with ethyl acetate (A3). The content of flavonoids in diethyl-ether and ethyl acetate extracts ranged from 52.5-244.4 mg·ml-1 and 48.7 -117.5 mg·ml-1, respectively. For quantification of luteolin and total flavonoids the HPLC method was applied, using reverse phase column C18, mobile phase consisting of 5% acetic acid and methanol in gradient elution mode and column temperature set to 40 o C. The content of luteolin in the plant samples ranged from 0.23-0.48 % (m/m), while the content of total flavonoids was found to be 0.26-0.52 %.


2002 ◽  
Vol 85 (5) ◽  
pp. 1015-1020 ◽  
Author(s):  
Khadiga M Kelani ◽  
Azza M Aziz ◽  
Maha A Hegazy ◽  
Laila Abdel Fattah

Abstract A selective, precise, and accurate method was developed for the determination of cimetidine (C), famotidine (F), and ranitidine hydrochloride (R·HCI)in the presence of their sulfoxide derivatives. The method involves quantitative densitometric evaluation of mixtures of the drugs and their derivatives after separation by high-performance thin-layer chromatography on silica gel plates (10 × 20 cm) with ethyl acetate–isopropanol–20% ammonia (9 + 5 + 4, v/v) as the mobile phase for both C and F and ethyl acetate–methanol–20% ammonia (10 + 2 + 2, v/v) as the mobile phase for R·HCI; Rf values for C, F, and R·HCI and their corresponding derivatives were 0.85 and 0.59, 0.73 and 0.41, and 0.56 and 0.33, respectively. Developing time was approximately 20 min. For densitometric evaluation, peak areas were recorded at 218, 265, and 313 nm for C, F, and R·HCI, respectively. The relationship between concentration and the corresponding peak area was plotted for the ranges of 5–50 μg/spot for C and 2–20 μg/spot for F and R·HCl. Mean recoveries were 100.39 ± 1.33, 99.77 ± 1.30, and 100.09 ± 0.69% for C, F, and R·HCI, respectively. The proposed method was used successfully for stability testing of the pure drugs in the presence of up to 90% of their degradates, in bulk powder and dosage forms. The results obtained were analyzed statistically and compared with those obtained by the official methods.


2021 ◽  
Vol 10 (4) ◽  
pp. 2804-2809

Thymus species belong to the Lamiaceae family, of which 18 species in the flora of Iran, 6 are endemic to Iran. In the current research, high-performance thin-layer chromatography (HPTLC) technique as an easy, fast, reproducible, and low-cost method was used for the determination of rosmarinic acid and caffeic acid in Thymus lancifolius (T. lancifolius) and two species of Thymus daenensis (T. daenensis) from Iran. Toluene-ethyl acetate-formic acid with a ratio of 67.72-22.90 and 9.38% was selected as the mobile phase of rosmarinic acid, and ethyl acetate-methanol-formic acid-water with a ratio of 85-8-2 and 5% was designated as the mobile phase of caffeic acid. The highest and lowest amount of rosmarinic acid was observed for T. daenensis 1 (10.54±0.12 mg/g) and T. lancifolius (0.46±0.01 mg/g), respectively. The amount of rosmarinic acid for T. daenensis 2 was obtained as 7.85±0.02 mg/g for each of the dried plants. In the following, HPTLC analysis of caffeic acid for T. daenensis 1, T. daenensis 2, and T. lancifolius was acquired amounts of 0.78±0.007, 0.13±0.007, and 0.26±0.007 mg/g for each of dried plants, respectively. Therefore, regarding the special effects of phenolic acids and properties of the Thymus genus, the acquired results are suitable for application in pathogenic research, infections, immunology diseases, and evaluation of the antioxidant activity.


2018 ◽  
Vol 5 (1) ◽  
pp. 88
Author(s):  
Hartati Soetjipto ◽  
Yohanes Martono ◽  
Zulfa Yuniarti

Isolation and Analysis of Genistein of Overripe Tempe using Column Chromatography MethodABSTRACTGenistein is one of the aglycone isoflavone compounds in tempe that has various biochemical activities, including anticancer, antitumor, and antioxidants. Commonly used isoflavone extraction methods resulted in isoflavone crude extract. The aim of this study was to isolate the genistein of overripe tempe through determining the appropriate combination of mobile phases in genistein isolation and the determination of genistein content in both crude extract and isolate. The overripe tempe was first extracted, then genistein was isolated from the crude extract using column chromatography method. The determination of mobile phase combination was done by Thin Layer Chromatography while the genistein content was quantitatively determined by using High Performance Liquid Chromatography. The results showed that the appropriate combination of mobile phase for genistein isolation was chloroform : methanol (15 : 1, v/v). Genistein content in the crude extract and isolates were 4737.50 and 31.36 μg/g extract, respectively. The genistein purity in the isolates was 63.80%, while the purity in the isoflavone extract was 31.98%.Keywords: genistein, HPLC, isoflavone, overripe tempe, TLC ABSTRAKGenistein merupakan salah satu senyawa isoflavon aglikon dalam tempe yang memiliki bermacam-macam aktivitas biokimia, diantaranya antikanker, antitumor, dan antioksidan. Metode ekstraksi isoflavon yang umum diterapkan, menghasilkan ekstrak kasar isoflavon yang masih berupa campuran. Tujuan dari penelitian ini adalah untuk mengisolasi genistein dari tempe busuk melalui tahap penentuan kombinasi fase gerak yang tepat dalam isolasi genistein serta penentuan kandungan genistein baik dalam ekstrak kasar maupun isolat. Tempe busuk mula-mula diekstrak, selanjutnya genistein diisolasi dari ekstrak kasar menggunakan metode kromatografi kolom. Penentuan kombinasi fase gerak dilakukan secara Kromatografi Lapis Tipis, sedangkan kandungan genistein secara kuantitatif ditentukan dengan menggunakan Kromatografi Cair Kinerja Tinggi. Hasil penelitian menunjukkan bahwa kombinasi fase gerak yang tepat untuk isolasi genistein adalah kloroform : metanol (15 : 1, v/v). Kandungan genistein dalam ekstrak kasar dan isolat genistein berturut-turut sebesar 4737,50 dan 31,36 μg/g ekstrak. Kemurnian genistein dalam isolat adalah sebesar 63,80%, sedangkan kemurniannya dalam ekstrak isoflavon adalah sebesar 31,98%. Kata Kunci: genistein, HPLC, isoflavon, tempe busuk, KLT


2007 ◽  
Vol 90 (1) ◽  
pp. 142-146 ◽  
Author(s):  
Bhavesh H Patel ◽  
Bhanubhai N Suhagia ◽  
Madhabhai M Patel ◽  
Jignesh R Patel

Abstract This paper describes validated high-performance liquid chromatography (HPLC) and high-performance thin-layer chromatography (HPTLC) methods for the simultaneous estimation of pantoprazole (PANT) and domperidone (DOM) in pure powder and capsule formulations. The HPLC separation was achieved on a Phenomenex C18 column (250 mm id, 4.6 mm, 5 μm) using 0.01 M, 6.5 pH ammonium acetate buffer-methanol-acetonitrile (30 + 40 + 30, v/v/v, pH 7.20) as the mobile phase at a flow rate of 1.0 mL/min at ambient temperature. The HPTLC separation was achieved on an aluminum-backed layer of silica gel 60F254 using ethyl acetatemethanol (60 + 40, v/v) as the mobile phase. Quantification was achieved with ultraviolet (UV) detection at 287 nm over the concentration range 400-4000 and 300-3000 ng/mL with mean recovery of 99.35 ± 0.80 and 99.08 ± 0.57% for PANT and DOM, respectively (HPLC method). Quantification was achieved with UV detection at 287 nm over the concentration range 80-240 and 60-180 ng/spot with mean recovery of 98.40 ± 0.67 and 98.75 ± 0.71% for PANT and DOM, respectively (HPTLC method). These methods are simple, precise, and sensitive, and they are applicable for the simultaneous determination of PANT and DOM in pure powder and capsule formulations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Beata Polak ◽  
Adam Traczuk ◽  
Sylwia Misztal

AbstractThe problems with separation of amino acid mixtures in reversed-phase mode are the result of their hydrophilic nature. The derivatisation of the amino group of mentioned above solutes leads to their solution. For this purpose, 9-fluorenylmethoxycarbonyl chloroformate (f-moc-Cl) as the derivatisation reagent is often used. In our study, the separation of some f-moc- amino acid derivatives (alanine, phenylalanine, leucine, methionine, proline and tryptophan) with the use of micellar systems of reversed-phase high-performance thin-layer chromatography (HPTLC) and pressurized planar electrochromatography (PPEC) is investigated. The effect of surfactant concentration, its type (anionic, cationic and non-ionic) and mobile phase buffer pH on the discussed above solute migration distances are presented. Our work reveals that the increase of sodium dodecylsulphate concentration in the mobile phase has a different effect on solute retention in HPTLC and PPEC. Moreover, it also affects the order of solutes in both techniques. In PPEC, in contrast to the HPTLC technique, the mobile phase pH affects solute retention. The type of surfactant in the mobile phase also impacts solute retention and migration distances. A mobile phase containing SDS improves system efficiency in both techniques. Herein, such an effect is presented for the first time.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Alexandra Hunsberger ◽  
Bernard Fried ◽  
Joseph Sherma

AbstractThe effects of a 5 versus 25 miracidia exposure of Echinostoma caproni on the lipid composition of Biomphalaria glabrata was studied using high performance thin layer chromatography (HPTLC)-densitometry. A 50 miracidia dose was not used because such a high level of exposure caused severe snail mortality by 3 weeks post-exposure (PE). Lipids were determined in the digestive-gland gonad complex (DGG) of the exposed snails and in the uninfected matched controls at 2 and 4 weeks PE. Extraction of lipids from DGGs was carried out by the Folch method with chloroform-methanol (2:1), and extracts were analyzed on Analtech HPTLC-HLF pre-adsorbent silica gel plates with measurement of separated bands using a CAMAG Scanner 3. For neutral lipids the mobile phase was petroleum ether-diethyl ether-glacial acetic acid (80:20:1) and the detection reagent was 5% ethanolic phosphoric acid, and for polar lipids chloroform-methanol-deionized water (65:25:4) mobile phase and 10% cupric sulfate in 8% phosphoric acid detection reagent were used. No significant differences in the concentrations of free sterols, free fatty acids, triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine were seen at 2 weeks PE in any of the groups. At 4 weeks PE, the free fatty acid concentration increased significantly in the snails exposed to 25 miracidia compared to that of the 5 miracidia/snail group or the controls. Elevation of the free fatty acid fraction in the high dose snail group suggested that some changes occurred in the lipid metabolism of the snails in that group as a function of miracidia dose.


Author(s):  
M. I. UVAROVA ◽  
G. D. BRYKINA ◽  
O. A. SHPIGUN

In this work the influence of the porphyrin structure and of the nature of the mobile phase upon retention parameters is examined by means of reversed phase high-performance liquid chromatography (HPLC). Acetonitrile–ethyl acetate and other mixtures were used as eluents. An increase in the retention of azo- and benzosubstituted porphyrins as well as of those containing a large number of carbon atoms as substituents of macrocycles may be noted. A variation in the polarity of the mobile phase affects the retention of the ligands more than that of their zinc complexes. The retention of the most hydrophobic compounds may be well described in coordinates lg k'– lg M. For less hydrophobic porphyrins these dependences are close to linear only within limited intervals of mobile phase ethyl acetate concentration. The best separation of zinc complexes was achieved with acetonitrile as the eluent. The detection limit of porphyrin ligands and complexes with metals is n × 10-8 M.


Sign in / Sign up

Export Citation Format

Share Document