scholarly journals Green Synthesis of Zinc Oxide Nanoparticles and their Antibacterial Properties using Plant Extract of Aristolochia elegans

2020 ◽  
Vol 32 (10) ◽  
pp. 2589-2593
Author(s):  
Juhi Aggarwal ◽  
Tanveer Alam

Present paper deals with the synthesis of zinc oxide nanoparticles (ZnONPs) using leaf extract of Aristolochia elegans and study of antibacterial property for some human bacterial pathogens. The ZnONPs synthesized were characterized using UV-Vis, FT-IR, XRD, EDX, TEM and SEM techniques. The synthesized ZnONP having a crystallite size of 20.1 nm exhibited a distinct absorption peak maxima at 358 nm. The ZnONPs synthesized using the extract of A. elegans have shown antibacterial activity against M. luteus, S. aureus (Gram-positive), E. coli and P. aeruginosa (Gram-negative).

2021 ◽  
Vol 9 ◽  
Author(s):  
Sergey V. Gudkov ◽  
Dmitriy E. Burmistrov ◽  
Dmitriy A. Serov ◽  
Maxim B. Rebezov ◽  
Anastasia A. Semenova ◽  
...  

The development of antibiotic resistance of bacteria is one of the most pressing problems in world health care. One of the promising ways to overcome microbial resistance to antibiotics is the use of metal nanoparticles and their oxides. In particular, numerous studies have shown the high antibacterial potential of zinc oxide nanoparticles (ZnO-NP) in relation to gram-positive and gram-negative bacteria. This mini-review includes an analysis of the results of studies in recent years aimed at studying the antibacterial activity of nanoparticles based on zinc oxide. The dependence of the antibacterial effect on the size of the applied nanoparticles in relation to E. coli and S. aureus is given. The influence of various ways of synthesis of zinc oxide nanoparticles and the main types of modifications of NP-ZnO to increase the antibacterial efficiency are also considered.


RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 8806-8813 ◽  
Author(s):  
Ekrem Ozkan ◽  
Feyza Tunali Ozkan ◽  
Elaine Allan ◽  
Ivan P. Parkin

Crystal violet–ZnO mixtures were incorporated into PDMS by a simple two step method. The modified polymer demonstrated significant antibacterial activity againstE. coliandS. aureus, showing possibly the most potent light-induced antibacterial polymer reported to date.


2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Meron Girma Demissie ◽  
Fedlu Kedir Sabir ◽  
Gemechu Deressa Edossa ◽  
Bedasa Abdisa Gonfa

The synthesis of metal oxide nanoparticles with the use of medicinal plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from indigenous “Koseret” Lippia adoensis leaf extract which is an endemic medicinal plant and cultivated in home gardens of different regions of Ethiopia. The biosynthesized zinc oxide nanoparticles were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. Furthermore, this study also evaluated the antibacterial activity of the synthesized ZnO nanoparticles against clinical and standard strains of Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Enterococcus faecalis by the disc diffusion method. According to the result of this study, ZnO nanoparticles synthesized using Lippia adoensis leaf extract showed promising result against both Gram-positive and Gram-negative bacterial strains with a maximum inhibition zone of 14 mm and 12 mm, respectively, using uncalcinated form of the synthesized ZnO nanoparticles.


2022 ◽  
Vol 12 (2) ◽  
pp. 710
Author(s):  
Fohad Mabood Husain ◽  
Faizan Abul Qais ◽  
Iqbal Ahmad ◽  
Mohammed Jamal Hakeem ◽  
Mohammad Hassan Baig ◽  
...  

Global emergence and persistence of the multidrug-resistant microbes have created a new problem for management of diseases associated with infections. The development of antimicrobial resistance is mainly due to the sub-judicious and unprescribed used of antimicrobials both in healthcare and the environment. Biofilms are important due to their role in microbial infections and hence are considered a novel target in discovery of new antibacterial or antibiofilm agents. In this article, zinc oxide nanoparticles (ZnO-NPs) were prepared using extract of Plumbago zeylanica. ZnO-NPs were characterized and then their antibiofilm activity was tested against Gram-positive and Gram-negative bacteria. The ZnO-NPs were polydispersed, and the average size was obtained as 24.62 nm. The presence of many functional groups indicated that phytocompounds of P. zeylanica were responsible for the synthesis, capping, and stabilization of ZnO-NPs. Synthesized NPs inhibited the biofilm formation of E. coli, S. aureus, and P. aeruginosa by 62.80%, 71.57%, and 77.69%, respectively. Likewise, concentration-dependent inhibition of the EPS production was recorded in all test bacteria. Microscopic examination of the biofilms revealed that ZnO-NPs reduced the bacterial colonization on solid support and altered the architecture of the biofilms. ZnO-NPs also remarkably eradicated the preformed biofilms of the test bacteria up to 52.69%, 59.79%, and 67.22% recorded for E. coli, S. aureus, P. aeruginosa, respectively. The findings reveal the ability of green synthesized zinc oxide nanoparticles to inhibit, as well as eradicate, the biofilms of Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Quynh Mai Thi Tran ◽  
Hong Anh Thi Nguyen ◽  
Van-Dat Doan ◽  
Quang-Hieu Tran ◽  
Van Cuong Nguyen

Surgical site infection (SSI), mainly caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), is considered the most frequent complication in a surgical patient. Globally, surgical site infection accounts for 2.5%-41.9% and even higher rates in developing countries. SSI affects not only the patient’s health but also the development of society. Like previous reports, a surgical suture increases the hazard of SSI due to its structure. The antibacterial suture is the most effective solution to decrease the SSI. Due to some unique properties, nano-zinc oxide (ZnO NPs) is one of the promising antibacterial agents for coating on the suture. In this study, we aim to synthesize the ZnO NPs using Piper betle leaf extract and used it to coat the suture. The effect of synthesis parameters on the size and morphology of ZnO NPs was studied as well. The UV-Vis spectrum indicated the formation of ZnO NPs with λ max at around 370 nm. The volume of leaf extract plays a role in controlling the size and morphology of zinc oxide nanoparticles. The average particle size of as-synthesized ZnO NPs was around 112 nm with a hexagonal and spherical shape. Other than that, the results proved that ZnO NPs performed a high antibacterial activity against S. aureus and E. coli with its antibacterial effectiveness up to 5 days. The ZnO NP-coated sutures also exhibited a high performance on bacterial inactivation. With key findings, this study made a tremendous contribution to lowering the burden on medical services in terms of medical treatment cost in developing countries.


Author(s):  
Udayashankar Arakere Chunchegowda ◽  
Ashwini Bagepalli Shivaram ◽  
Murali Mahadevamurthy ◽  
Lakshmeesha Thimappa Ramachndrappa ◽  
Sreelatha Gopalakrishna Lalitha ◽  
...  

Author(s):  
Prashast Kumar Tripathi Satish Chandra Sati

Abstract-In this research paper we have reported the single pot synthesis of zinc oxide nanoparticles (ZnONPs) for the first time by utilisation of leaves extract of Himalayan medicinal plant Artemisia roxburghiana. The principle of green chemistry was utilised at maximum possible level to make the synthesis not only environmentally compatible but also cost effective. The obtained nanoparticles are of good shape and size as confirmed by the instrumental techniques such as Powder XRD, HR-TEM, HR-SEM and FT-IR. The average size of the synthesized nanoparticles was between 26 to 35 nm. These nanoparticles then screened for the anti - microbial assay in which it has shown positive activity against E. coli, A. Tereus and C. falcatum. The second application of the synthesized nanoparticles is estimation of anti - oxidant activity against the DPPH. The IC value of the nanoparticles is formed to be 50 53 in EtoH while that of the standard, ascorbic acid was 26 in the same solvent. Keywords:Art emisia roxburghiana, Asteraceae, ZnONPs, Antimicrobial activity and Antioxidant activity


Sign in / Sign up

Export Citation Format

Share Document