scholarly journals Synergistic Antimicrobial Activities of Combinations of Vanillin and Essential Oils of Cinnamon Bark, Cinnamon Leaves and Cloves

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.

2009 ◽  
Vol 3 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Hend A. Hamedo

Technological application of essential oils, as natural antimicrobial agents, to reduce the effect of pathogenic microorganisms, requires new methods of detection. The present work evaluated the parameters of antimicrobial activity of the essential oils of rosemary (Rosmarinus officinalis) on two pathogenic strains Escherichia coli and Staphylococcus aureus. The MBC and MIC values were of 2.5, 25 μl ml-1, and values of 1.25 and 5 μl ml-1 for the two strains respectively. In this study, an attempt has been made to evaluate randomly amplified polymorphic DNA (RAPD) analysis for its potential to establish antimicrobial effect of rosemary essential oil. For the preliminary assessment, this study compared the effects occurring at molecular levels in E. coli and Staph. aureus exposed to rosemary essential oil at the MIC concentrations for the two organisms. The qualitative modifications arising in random amplified polymorphic DNA (RAPD) profiles as a measure of DNA effects were compared with control which showed many differences. In conclusion, the measurement of parameters at molecular levels is valuable for investigating the specific effects of agents interacting with DNA.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1574
Author(s):  
Zoran S. Ilić ◽  
Lidija Milenković ◽  
Ljubomir Šunić ◽  
Nadica Tmušić ◽  
Jasna Mastilović ◽  
...  

The aim of this study was to determine the antimicrobial activity of essential oils obtained from sweet basil (Ocimum basilicum L. cv. ‘Genovese’) cultivated in the open field under different shading conditions (red, blue, and pearl nets with a shade index of 50% and full sunlight exposure (control plants)), harvested at different times. The antimicrobial activity of basil essential oils (BEOs) obtained from all samples was determined for four microorganisms, while determinations for an additional five microorganisms included samples from non-shaded plants, plants grown under red and pearl nets, and second harvest of plants grown under blue net. Basil essential oil exhibited antimicrobial activity surpassing the activity of relevant commercial antibiotics regardless of growing conditions in the case of B. cereus, K. pneumoniae and C. albicans, while superior antimicrobial activity was exhibited in the case of essential oils from plants grown under blue nets in the case of S. aureus, E. coli and P. vulgaris. The influence of the application of colored shading nets was highly significant (p < 0.01) in the cases of all analyzed microorganisms except C. albicans and P. aeruginosa, while the influence of harvest time was proven in the cases of all microorganisms except K. pneumoniae. ANOVA proved that antimicrobial activities are highly dependent on the methods of plant production, shading treatment, and harvest time. Obtained results are discussed in relation to previously determined composition and yield of essential oils from basil grown under shade nets and harvested in different periods.


2011 ◽  
Vol 6 (7) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Márcia G. Martini ◽  
Humberto R. Bizzo ◽  
Davyson de L. Moreira ◽  
Paulo M. Neufeld ◽  
Simone N. Miranda ◽  
...  

Ocimum selloi, a traditional medicinal plant from Brazil, is sold in open-air markets at Rio de Janeiro State. Hesperozygis myrtoides is a very aromatic small bush found in the State of Minas Gerais, Brazil, growing at an altitude of 1800m. The chemical composition of both essential oils was analyzed as well as their antimicrobial activity against fungi and bacteria. For all specimens of Ocimum selloi obtained at open-air markets, methylchavicol was major compound found (93.6% to 97.6%) in their essential oils. The major compounds identified in the oil of H. myrtoides were pulegone (44.4%), isomenthone (32.7%), and limonene (3.5%). Both oils displayed antimicrobial activity against all tested microorganisms but Candida albicans was the most susceptible one. Combinations of the two oils in different proportions were tested to verify their antimicrobial effect against C. albicans, which, however, was not modified in any of the concentrations tested. The minimum inhibitory concentration (MIC) was determined to confirm the antimicrobial activity against C. albicans as well as other clinical isolates ( C. glabrata, C. krusei, C. parapsilosis and C. tropicalis).


Author(s):  
Mayank Ravindra Dhore ◽  
Asha R. Jha

Background: This study was undertaken to investigate and compare the antimicrobial effect of Onion bulbs (Allium cepa) and cinnamon bark (Cinnamomum zeylanicum) against some common bacteria causing Urinary tract infection.Methods: Antimicrobial activity of the plant extract in different concentrations was observed. Commonly isolated bacteria from the urine samples of suspected and untreated patients which were found to be E. coli, Klebsiella pneumoniae and Pseudomonas aeruginosa.Results: The comparison between zones of inhibition showed a statistically significant data of both Allium cpea and Cinnamomum zeylanicum. The antimicrobial activity of cinnamon extract showed the maximum effect against Klebsiella pneumoniae, zone of inhibition 25.50 mm±3.72 with 2±l of extract and E. coli with zone of inhibition 11.72mm±1.86. The onion (Allium cepa) extract exhibited some antimicrobial effect, it was most effective against E. coli, though the effect was minimal.Conclusions: From the current study we conclude that the extract of onion and cinnamon bark are promising but were not as effective as the conventional antibiotics such as ciprofloxacin and nitrofurantoin but can be a good alternative in selected group of patient.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2403 ◽  
Author(s):  
R. Syafiq ◽  
S. M. Sapuan ◽  
M. Y. M. Zuhri ◽  
R. A. Ilyas ◽  
A. Nazrin ◽  
...  

Recently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film’s biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi. One of the several possibilities that are being extensively studied is the incorporation of essential oils (EOs) into the packaging material. The EOs used in food packaging films actively prevent inhibition of bacteria and fungi and have a positive effect on food storage. This work intended to present their mechanical and barrier properties, as well as the antimicrobial activity of anti-microbacterial agent reinforced starch composites for extending product shelf life. A better inhibition of zone of antimicrobial activity was observed with higher content of essential oil. Besides that, the mechanical properties of starch-based polymer was slightly decreased for tensile strength as the increasing of essential oil while elongation at break was increased. The increasing of essential oil would cause the reduction of the cohesion forces of polymer chain, creating heterogeneous matrix and subsequently lowering the tensile strength and increasing the elongation (E%) of the films. The present review demonstrated that the use of essential oil represents an interesting alternative for the production of active packaging and for the development of eco-friendly technologies.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Sarin Tadtong ◽  
Supatcha Suppawat ◽  
Anchalee Tintawee ◽  
Phanida Saramas ◽  
Suchada Jareonvong ◽  
...  

Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Σfic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Σfic<1). The blended essential oil preparations, characterized for their components by GC/MS, contained linalyl acetate, and linalool as major components. Our experiments showed that the differential antimicrobial effect of either blended oil preparations or single/pure essential oils may be influenced by the amount of linalool and linalyl acetate, and the number of active components in either the blended preparations or single/pure essential oils. In addition, blended oil preparations expressed synergistic antimicrobial effect by the accumulation of active components such as linalool and linalyl acetate and combining active constituents of more than one oil.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Sebastián Candelaria-Dueñas ◽  
Rocío Serrano-Parrales ◽  
Marisol Ávila-Romero ◽  
Samuel Meraz-Martínez ◽  
Julieta Orozco-Martínez ◽  
...  

In Tehuacán-Cuicatlán valley (Mexico), studies have been carried out on the essential oils of medicinal plants with antimicrobial activity and it was found that they present compounds in common such as: α-pinene, β-pinene, carvacrol, eugenol, limonene, myrcene, ocimene, cineole, methyl salicylate, farnesene, and thymol. The goal of this study was to assess the antimicrobial activity of essential oils’ compounds. The qualitative evaluation was carried out by the Kirby Baüer agar diffusion technique in Gram-positive bacteria (11 strains), Gram-negative bacteria (18 strains), and yeasts (8 strains). For the determination of the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), the agar dilution method was used. All the evaluated compounds presented antimicrobial activity. The compounds eugenol and carvacrol showed the largest inhibition zones. Regarding yeasts, the compounds ocimene, cineole, and farnesene did not show any activity. The compounds eugenol, carvacrol, and thymol presented the lowest MIC; bactericidal effect was observed at MIC level for S. aureus 75MR, E. coli 128 MR, and C albicans CUSI, for different compounds, eugenol, carvacrol, and thymol. Finally, this study shows that the essential oils of plants used by the population of Tehuacán-Cuicatlán valley share compounds and some of them have antibacterial and fungicidal activity.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


2018 ◽  
Vol 6 (4) ◽  
pp. 122 ◽  
Author(s):  
Fahad Aldoghaim ◽  
Gavin Flematti ◽  
Katherine Hammer

Essential oils from the Western Australian (WA) Eucalyptus mallee species Eucalyptus loxophleba, Eucalyptus polybractea, and Eucalyptus kochii subsp. plenissima and subsp. borealis were hydrodistilled from the leaves and then analysed by gas chromatography–mass spectrometry in addition to a commercial Eucalyptus globulus oil and 1,8-cineole. The main component of all oils was 1,8-cineole at 97.32% for E. kochii subsp. borealis, 96.55% for E. kochii subsp. plenissima, 82.95% for E. polybractea, 78.78% for E. loxophleba 2, 77.02% for E. globulus, and 66.93% for E. loxophleba 1. The Eucalyptus oils exhibited variable antimicrobial activity determined by broth microdilution, with E. globulus and E. polybractea oils showing the highest activities. The majority of microorganisms were inhibited or killed at concentrations ranging from 0.25% to 8.0% (v/v). Enterococcus faecalis and Candida albicans were the least susceptible organisms, whilst Acinetobacter baumannii was the most sensitive. In conclusion, all oils from WA Eucalyptus species showed microorganism inhibitory activity, although this varied according to both the Eucalyptus species and the microorganism tested. These data demonstrate that WA Eucalyptus oils show activity against a range of medically important pathogens and therefore have potential as antimicrobial agents.


2013 ◽  
pp. 171-183 ◽  
Author(s):  
Emilija Ivanova ◽  
Natalija Atanasova-Pancevska ◽  
Dzoko Kungulovski

It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO). The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC) of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5?g/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25?g/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat?ment of plants infected by certain phytopathogens, etc.


Sign in / Sign up

Export Citation Format

Share Document