Impact of Different Fiber Reinforcement on Flexural Strength, Fracture Toughness and Abrasive Resistance of Provisional Restorative Resin

Author(s):  
Dr. Pratik Bhatnagar

Aim: To assess and compare the impact of reinforcement of PMMA with glass fibre, polyethylene fibre and carbon fibres on flexural strength, fracture toughness and abrasive resistance. Background: In view of inadequate mechanical and physical characteristics of PMMA which include low impact strength and low surface hardness and resulting lowered clinical performance of the prosthesis, the study was designed to investigate the impact of reinforcement of PMMA with glass, polyethylene and carbon fibers on flexural strength, fracture toughness and abrasive resistance. Methods and Findings: Rectangular specimens (n=120; 30 each from 4 groups; 65 × 10 × 3.3 mm3) were fabricated and loaded on Universal Testing Machine until fracture for flexural strength and fracture toughness and on Taber Abrasive Tester for abrasive resistance. Data were analyzed using one–way ANOVA followed by Post Hoc test - Bonferroni multiple comparison analysis, using significance level of 0.05. Significant increase in fracture toughness was observed in specimens reinforced with polyethylene and carbon fiber, albeit the values of flexural strength were increased insignificantly. Specimens reinforced with glass and carbon fiber had significantly low values of abrasive resistance. Conclusion: Findings indicate that reinforcement of PMMA by non-specific fibers like glass, polyethylene and carbon resulted in significant increase in fracture toughness and decrease in abrasive resistance.

2020 ◽  
Vol 45 (1) ◽  
pp. 104-110 ◽  
Author(s):  
D Fuhrmann ◽  
D Murchison ◽  
S Whipple ◽  
K Vandewalle

SUMMARY Objectives: The purpose of this study was to evaluate the properties (fracture toughness, surface hardness) of newer conventional glass-ionomer restorative materials that are marketed for posterior stress-bearing areas compared with more traditional glass-ionomer restorative materials marketed for non–load-bearing areas and composite-resin restorative materials. Methods and Materials: Notched-beam fracture toughness specimens were created in a mold with each tested material (Equia Forte, GC America, with and without a surface coating of Equia Forte Coat; Ketac Universal, 3M/ESPE; ChemFil Rock, Dentsply; Fuji IX GP Extra, GC; Ionostar Molar, VOCO; Filtek Z250, 3M/ESPE; Filtek Supreme Ultra, 3M/ESPE) and fractured using a universal testing machine after 24 hours of storage. Hardness values were determined on the surface of the fracture toughness specimens using a hardness tester. Data were analyzed with a one-way ANOVA and Tukey's post hoc test per property (alpha=0.05). Results: The composite-resin restorative materials had significantly greater fracture toughness than the glass-ionomer materials. There was no significant difference in fracture toughness between the glass-ionomer materials. The use of a resin coating significantly increased the surface hardness of the newer glass ionomer marketed for stress-bearing areas. Conclusions: Fracture toughness was not improved with the newer glass-ionomer restorative materials marketed for stress-bearing areas compared to the conventional glass-ionomer materials, however a resin coating provided greater surface hardness.


2008 ◽  
Vol 368-372 ◽  
pp. 1019-1021
Author(s):  
Song Wang ◽  
Zhao Hui Chen

C/SiC, C/Si-O-C and C/C composites reinforced with T300 carbon fiber were fabricated via polycarbosilane (PCS), polysiloxane (PSO), and phenolic resin precursor polymers infiltration/pyrolysis, respectively. Flexural strength and fracture toughness of the composites were evaluated. The results showed that all the composites had poor mechanical properties, less than 160 MPa in flexural strength and 5 MPa•m1/2 in fracture toughness. Deep investigation illuminated that the fiber was damaged severely during the preparation of the composites, especially in the first cycle of precursor pyrolysis. Great degradation of the fiber has relationship with coarsening of the microstructure. Bad in-situ strength of the fiber resulted in poor performance of the composites.


2013 ◽  
Vol 38 (2) ◽  
pp. 168-176 ◽  
Author(s):  
J Perdigão ◽  
SD Fernandes ◽  
AM Pinto ◽  
FA Oliveira

SUMMARY The objective of this project was to study the influence of artificial aging and surface treatment on the microtensile bond strengths (μTBS) between zirconia and a phosphate monomer–based self-adhesive cement. Thirty zirconia disks (IPS e.max ZirCAD, Ivoclar Vivadent) were randomly assigned to two aging regimens: AR, used as received, which served as a control, and AG, artificial aging to simulate low-temperature degradation. Subsequently, the disks of each aging regimen were assigned to three surface treatments: NT, no surface treatment; CO, surface silicatization with CoJet sand (3M ESPE); and ZP, zirconia surface treated with Z-Prime Plus (Bisco Inc). Thirty discs were made of Filtek Z250 (3M ESPE) composite resin and luted to the zirconia discs using RelyX Unicem (3M ESPE). The specimens were sectioned with a diamond blade in X and Y directions to obtain bonded beams with a cross-section of 1.0 ± 0.2 mm. The beams were tested in tensile mode in a universal testing machine at a speed of 0.5 mm/min to measure μTBS. Selected beams were selected for fractographic analysis under the SEM. Statistical analysis was carried out with two-way analysis of variance and Dunnett T3 post hoc test at a significance level of 95%. The mean μTBS for the three AR subgroups (AR-NT, AR-CO, and AR-ZP) were significantly higher than those of the corresponding AG groups (p<0.0001). Both AR-CO and AR-ZP resulted in statistically significant higher mean bond strengths than the group AR-NT (p<0.006 and p<0.0001, respectively). Both AG-CO and AG-ZP resulted in statistically significant higher mean bond strengths than the group AG-NT (both at p<0.0001). Overall, AG decreased mean μTBS. Under the SEM, mixed failures showed residual cement attached to the zirconia side of the beams. CO resulted in a characteristic roughness of the zirconia surface. AR-ZP was the only group for which the amount of residual cement occupied at least 50% of the interface in mixed failures.


2013 ◽  
Vol 38 (5) ◽  
pp. E144-E153 ◽  
Author(s):  
M Chang ◽  
J Dennison ◽  
P Yaman

SUMMARY Purpose The purpose of this study was to evaluate the physical properties of current formulations of composite resins for polymerization shrinkage, surface hardness, and flexural strength. In addition, a comparison of Knoop and Vickers hardness tests was made to determine if there was a correlation in the precision between the two tests. Materials and Methods Four composite resin materials were used: Filtek LS (3M-ESPE), Aelite LS (Bisco), Kalore (GC America), and Empress Direct (Ivoclar). Ten samples of each composite (shade Vita A2) were used. Polymerization shrinkage was measured with the Kaman linometer using 2-mm-thick samples, cured for 40 seconds and measured with digital calipers for sample thickness. Surface microhardness samples were prepared (2-mm thick × 12-mm diameter) and sequentially polished using 600-grit silicone carbide paper, 9 μm and 1 μm diamond polishing solutions. After 24 hours of dry storage, Knoop (200 g load, 15 seconds dwell time) and Vickers (500 g load, 15 seconds dwell time) hardness tests were conducted. Flexural strength test samples (25 × 2 × 2 mm) were stored in 100% relative humidity and analyzed using a three-point bending test with an Instron Universal Testing Machine (Instron 5565, Instron Corp) applied at a crosshead speed of 0.75 ± 0.25 mm/min. Maximum load at fracture was recorded. One-way analysis of variance and Tukey multiple comparison tests were used to determine significant differences in physical properties among materials. Results Filtek LS had significantly lower shrinkage (0.45 [0.39] vol%). Aelite LS demonstrated the greatest Knoop surface hardness (114.55 [8.67] KHN), followed by Filtek LS, Kalore, and Empress Direct (36.59 [1.75] KHN). Vickers surface hardness was significantly greater for Aelite LS (126.88 [6.58] VH), followed by Filtek LS, Kalore, and Empress Direct (44.14 [1.02] VH). Flexural strength (MPa) was significantly higher for Aelite LS and Filtek LS (135.75 [17.35]; 129.42 [9.48]) than for Kalore and Empress Direct (86.84 [9.04]; 92.96 [9.27]). There is a strong correlation between results obtained using Knoop and Vickers hardness tests (r=0.99), although Vickers values were significantly greater for each material. Conclusion Results suggest that Aelite LS possesses superior hardness and flexural strength, while Filtek LS has significantly less shrinkage compared with the other composites tested.


2020 ◽  
Author(s):  
Guangqi He ◽  
Rongxiu Guo ◽  
Meishuan Li ◽  
Yang Yang ◽  
Linshan Wang ◽  
...  

Abstract In this paper, short-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0, 2, 5 and 10 vol.%) were fabricated by spark-plasma-sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 oC. The effects of Csf addition on the phase compositions, microstructures and mechanical properties (including hardness, flexural strength and fracture toughness) of Csf/Ti3SiC2 composites were investigated. The Csf, with a bi-layered transition layers, i.e. TiC and SiC layer, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the fracture toughness of Csf/Ti3SiC2 composites increased, but the flexural strength decreased, while the Vickers hardness decreased initially then increased steadily when the Csf content was higher than 2 vol.%. These changed performances could be attributed to the introduction of Csf and the formation of much stronger interfacial phases.


Author(s):  
Anubhuti Bakshi ◽  
Rajat Dang

ABSTRACT Aim To evaluate surface hardness and dimensional accuracy of type IV dental stone after incorporation of disinfectants. Materials and methods A total of 100 specimens, 50 (40 mm⨯ 10 mm) disk shaped and 50 frustum cone shaped, were fab- ricated from type IV dental stone after incorporation of various disinfectants, namely glutaraldehyde (2%), iodophor (1.76%), chlorhexidine (2%), and sodium hypochlorite (1%), for evaluation of surface hardness and dimensional accuracy. Surface hardness was tested after 1- and 24-hour time interval using Rockwell hard- ness testing machine. Dimensional accuracy was measured using traveling microscope. Data obtained were compiled and analyzed statistically by using analysis of variance and post hoc test. Results Results showed significant decrease in surface hard- ness of samples incorporated with disinfectants at 1 hour as compared with control (distilled water). Surface hardness of all the samples increased with time and was almost equal to control group at 24-hour interval, with iodophor showing the maximum value in comparison with the other disinfectants used. When dimensional accuracy of all the groups was compared, iodophor and sodium hypochlorite were found to cause negative alterations. Conclusion Within the limitations of this in vitro study, it was concluded that incorporation of disinfectants in die stone during mixing did not affect the hardness value at 24-hour interval. Dimensional accuracy was altered by iodophor and sodium hypochlorite, but remained unaffected by chlorhexidine and glutaraldehyde. How to cite this article Bakshi A, Dang R. Effect of Incorpo- ration of Disinfectants on Surface Hardness and Dimensional Accuracy of Die Stone An in vitro Study. Int J Prosthodont Restor Dent 2017;7(3):86-91.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1117-1125
Author(s):  
Teeb A. Mohameed ◽  
Sihama I. Salih ◽  
Wafaa M. Salih

 Many of the polymeric materials used for structural purposes have weak mechanical properties, these characteristics can therefore be improved by preparing a hybrid laminar composite. In this work use melting mixing method using screw extruder to prepare sheets of polymer blends and nanocomposites based on polymer blends, and using a hot hydraulic press machine to prepared hybrid laminates composites. Two groups of hybrid laminar composites were prepared, the first group is consist of [((94%PP: 5%PMMA: 1 %( PP-g-MA)): 0.3% ZrO2): 6%KF and 8%KF] and the second group is [((94%PP: 5%UHMWPE: 1 %( PP-g-MA)): 0.3% ZrO2): 6%KF and 8%KF]. The results illustrated the impact strength and fracture toughness are increase with increased weight percentage of Kevlar fiber in for both groups of laminar composites and the highest values for two groups are (58.1, 54.95 KJ/M2) and (8.4, 9.16 MPa√m) respectively, any that, at the rate of increment reached to (120.4%, 107%) and (52.7%, 66.5%) respectively, compared with the neat PP. Moreover, the flexural strength values of the first group samples of hybrid laminar composite remained constant, when added kevlar fiber to nanocomposite. While, the flexural strength values of the second group samples of hybrid laminar composite increase with increase the ratio of kevlar fiber in composite to reach the maximum values (92 MPa) at 8% wt. of kevlar fiber, any, at the rate of increment reached to 39.4% compared with the neat PP. As well as, the results shown that the flexural properties and fracture toughness of the second group samples higher than they are for the first group samples.


2020 ◽  
Vol 0 (4) ◽  
pp. 5-11
Author(s):  
I.V. ZLOBINA ◽  

Based on the analysis of scientific and technical literature and trends in the development of multi-purpose aircrafts, we can see a steady extension of the use of polymer composite materials (PCM) in their design. The importance of lightning protection is noted for aircrafts, the skin of which consists mainly of the PCM, and it is shown that one of the common means is a lightning protection coating (LPC) in the form of a metal grid distributed in the PCM surface layer. Anisotropy of PCM properties and reduced fracture toughness in comparison with metals necessitates the improvement of PCM compositions and technologies of their formation as well as the development of methods for final hardening treatment in the cured state, which can be effectively performed under the effect of microwave electromagnetic field. Consideration is given to the influence of a short-term exposure to microwave electromagnetic field on the stability of carbon fiber-reinforced PCM with PLC against impact loads, as well as on the surface hardness. Our findings show a decrease in the damaged area of the impact zone by 40-60% and the absence of microcracking and delamination as well as an increase in hardness by 7.8%. Particular emphasis is placed on a 3-fold decrease in the spread of hardness values after the microwave exposure, this indicating a significant increase in the uniformity of this important characteristic for the component performance. As a mechanism of these modifications, it is proposed to reduce the pore size and porosity and to increase the number of points of contact interaction between matrix and fiber agglomerates that ensure an increase in the structural density.


2005 ◽  
Vol 6 (2) ◽  
pp. 18-26 ◽  
Author(s):  
Nadia Malek Taher

Abstract Aim of the Study The aim of this study was to evaluate the effect of at-home (Opalesence/Dr. kit 15%, Ultradent, Products, Inc. South Jordan, UT, USA) and in-office (Superoxol 35%, Sultan Chemists, Inc., Englewood, NJ, USA) bleaching on the surface hardness of the following tooth colored restorative materials: composite resin, Point-4 (P4), Kerr Corporation, Orange, CA, USA; ormocer, Admira (AD),VOCO, Germany; compomer Dyract AP (DY), Dentsply DeTrey GmbH, Germany; and resin modified glass ionomer cement, Fuji II LC (FL), GC Corporation, Japan. Methodology Sixty specimens were prepared; 15 specimens of each material (each group n = 5, control after 15 days, at-home and in-office). All specimens were stored in distilled water at room temperature for 24 hrs before testing. A universal testing machine (Micromet 2100 series micro hardness testers) was used for testing Vicker's surface hardness for the three groups for every tested material. All results were statistically analyzed with one way analysis of variance (ANOVA), Post hoc Tukey HSD tests (P<0.05), and percentage changes for Tukey. Results All the tested materials showed an increase in Vicker's surface hardness between base line (24 hrs) and the control group after 15 days storage in distilled water except DY which showed a decrease in surface hardness. All tested materials showed a decrease in surface hardness from control group after 15 days and both at-home and in-office bleaching agents except DY which showed increased values. Significance At-home as well as in-office bleaching agents have a softening effect on some tooth colored restorative material, and the patient must be aware before using them. Citation Taher NM. The Effect of Bleaching Agents on the Surface Hardness of Tooth Colored Restorative Materials. J Contemp Dent Pract 2005 May;(6)2:018-026.


2010 ◽  
Vol 21 (6) ◽  
pp. 528-532 ◽  
Author(s):  
Ufuk İşerı ◽  
Zeynep Özkurt ◽  
Ender Kazazoğlu ◽  
Davut Küçükoğlu

The surface of zirconia may be damaged during grinding, influencing the mechanical properties of the material. The purpose of this study was to compare the flexural strength of zirconia after different grinding procedures. Twenty bar-type zirconia specimens (21 x 5 x 2 mm) were divided into 4 groups and ground using a high-speed handpiece or a low-speed straight handpiece until the bars were reduced 1 mm using two different grinding times: continuous grinding and short-time grinding (n=5). Control specimens (n=5) were analyzed without grinding. The flexural strengths of the bars were determined by using 3-point bending test in a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture load (N) was recorded, and the data were analyzed statistically by the Kruskal Wallis test at a significance level of 0.05. In the test groups, high-speed handpiece grinding for a short time had produced the highest mean flexural strength (878.5 ± 194.8 MPa), while micromotor continuous grinding produced the lowest mean flexural strength (733.8 ± 94.2 MPa). The control group was the strongest group (928.4 ± 186.5 MPa). However, there was no statistically significant differences among the groups (p>0.05). Within the limitations of the study, there was no difference in flexural strength of zirconia specimens ground with different procedures.


Sign in / Sign up

Export Citation Format

Share Document