scholarly journals Primary Response Assessment Method for Concept Design of Monotonous Thin-Walled Structures

10.14311/750 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
V. Zanic ◽  
P. Prebeg

A concept design methodology for monotonous, tapered thin-walled structures (wing/fuselage/ship/bridge) is presented including modules for: model generation; loads; primary (longitudinal) and secondary (transverse) strength calculations; structural feasibility (buckling/fatigue/ultimate strength criteria); design optimization modules based on ES/GA/FFE; graphics. A method for primary strength calculation is presented in detail. It provides the dominant response field for design feasibility assessment. Bending and torsion of the structure are modelled with the accuracy required for concept design. A ‘2.5D-FEM’ model is developed by coupling a 1D-FEM model along the ‘monotonity’ axis and a 2D-FEM model(s) transverse to it. The shear flow and stiffness characteristics of the cross-section for bending and pure/restrained torsion are given, based upon the warping field of the cross-section. Examples: aircraft wing and ship hull. 

2019 ◽  
Vol 91 ◽  
pp. 02042
Author(s):  
Natalia D. Korsun ◽  
Daria A. Prostakishina

The paper discusses the use of lightweight thin-walled structures which make it possible to save resources in steel construction. The highlighted challenges that this industry face in the Russian Federation involve insufficient development of the domestic standards. A thin-walled sigma-profile element with 300 mm in a section height has been studied. The element, its design diagram and loading have been chosen taking into account the structural performance of the columns and girders involved in CFS frameworks. The paper presents analysis technique for a thin-walled profile which performs under axial compression and axial bending compression. The structures have been calculated taking into account their main feature - the initial geometric imperfections. The analysis of the changed effective characteristics and stresses in the cross-section has revealed the significant influence of the initial geometric imperfections of the profiles and location of the extra eccentricity against the element’s initial curvatures. The elastic-plastic behaviour of material occurs when the stresses in the full cross-section achieve 0.71 Ryignoring the initial geometric imperfections, and 0.58 Ry– with regard to them. The paper substantiates the need to consider unevenness of the mechanical properties of steel distributed over the cross-section of the profile. Based on the experimental data obtained, conclusions have been drawn on the necessary adaptation of the indirect method for evaluating the strength characteristics of thin-walled samples.


2019 ◽  
Vol 278 ◽  
pp. 03005
Author(s):  
Lei Zhang ◽  
Weidong Zhu ◽  
Aimin Ji ◽  
Liping Peng

In this paper, a new approach to identify cross-section deformation modes is presented and utilized in the establishment of a high-order beam model for dynamic analyses of thin-walled structures. Towards this end, a systematic procedure to extract cross-section in-plane vibration shapes for a thin-walled cross-section is developed based on elastic plate/shell theory. Then the distortion shapes are separated from vibration shapes by removing the components of classic modes involved with the minimum value problem of 2-norm. Sequentially, curve fitting method is utilized to approximate the distortion shape functions along the cross-section midline. It should be noticed that these distortion modes are arranged in hierarchy consistent with the order that they are identified and the number of distortions to be identified depends on the required model precision. Based on this, Hamilton's principle is applied to formulate the dynamic governing equations of the beam by constructing its displacement field with the linear superposition of the cross-section mode shapes including distortions. Numerical examples are also presented to validate the new approach and to demonstrate its efficiency in the reproduction of three-dimensional behaviours of thin-walled structures in dynamic analyses.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2125 ◽  
Author(s):  
Paweł Dunaj ◽  
Stefan Berczyński ◽  
Karol Miądlicki ◽  
Izabela Irska ◽  
Beata Niesterowicz

The paper presents a new way to conduct passive elimination of vibrations consisting of covering elements of structures with low dynamic stiffness with polylactide (PLA). The PLA cover was created in 3D printing technology. The PLA cover was connected with the structure by means of a press connection. Appropriate arrangement of the PLA cover allows us to significantly increase the dissipation properties of the structure. The paper presents parametric analyses of the influence of the thickness of the cover and its distribution on the increase of the dissipation properties of the structure. Both analyses were carried out using finite element models (FEM). The effectiveness of the proposed method of increasing damping and the accuracy of the developed FEM models was verified by experimental studies. As a result, it has been proven that the developed FEM model of a free-free steel beam covered with polylactide enables the mapping of resonance frequencies at a level not exceeding 0.6% of relative error. Therefore, on its basis, it is possible to determine the parameters of the PLA cover. Comparing a free-free steel beam without cover with its PLA-covered counterpart, a reduction in the amplitude levels of the receptance function was achieved by up to 90%. The solution was validated for a steel frame for which a 37% decrease in the amplitude of the receptance function was obtained.


2016 ◽  
Vol 12 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Aníbal J.J. Valido ◽  
João Barradas Cardoso

Purpose The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section. Design/methodology/approach In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section. Findings The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables. Originality/value The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.


2016 ◽  
Vol 62 (2) ◽  
pp. 229-264 ◽  
Author(s):  
A. Szychowski

Abstract Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section res i stance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.


2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Joep P. A. Nijssen ◽  
Giuseppe Radaelli ◽  
Charles J. Kim ◽  
Just L. Herder

Abstract Compliant shell mechanisms utilize thin-walled structures to achieve motion and force generation. Shell mechanisms, because of their thin-walled nature and spatial geometry, are building blocks for spatial mechanism applications. In spatial compliant mechanism design, the ratio of compliance is the representation of the kinetostatics involved. Using shell mechanisms in concept design, however, can prove difficult without a uniform characterization method. In this article, we make use of compliance ellipsoids to achieve characterization of the ratio of compliance for shell mechanisms. Ten promising shells are presented with the kinetostatic characteristics, combined with a uniform method of determining the kinetostatic characteristics for other unknown shells. Finally, we show how shells are indeed a valid alternative in the spatial mechanism design, compared to conventional flexure mechanisms.


1993 ◽  
Vol 115 (4A) ◽  
pp. 432-440 ◽  
Author(s):  
C. Ribreau ◽  
S. Naili ◽  
M. Bonis ◽  
A. Langlet

The topic of this study concerns principally representative models of some elliptical thin-walled anatomic vessels and polymeric tubes under uniform negative transmural pressure p (internal pressure minus external pressure). The ellipse’s ellipticity ko, defined as the major-to-minor axis ratio, varies from 1 up to 10. As p decreases from zero, at first the cross-section becomes somewhat oval, then the opposite sides touch in one point at the first-contact pressure pc. If p is lowered beneath pc, the curvature of the cross-section at the point of contact decreases until it becomes zero at the osculation pressure or the first line-contact pressure p1. For p<p1, the contact occurs along a straight-line segment, the length of which increases as p decreases. The pressures pc and p1 are determined numerically for various values of the wall thickness of the tubes. The nature of contact is especially described. The solution of the related nonlinear, two-boundary-values problem is compared with previous experimental results which give the luminal cross-sectional area (from two tubes), and the area of the mid-cross-section (from a third tube).


Author(s):  
D Xing ◽  
W Chen ◽  
J Ma ◽  
L Zhao

In nature, bamboo develops an excellent structure to bear nature forces, and it is very helpful for designing thin-walled cylindrical shells with high load-bearing efficiency. In this article, the cross-section of bamboo is investigated, and the feature of the gradual distribution of vascular bundles in bamboo cross-section is outlined. Based on that, a structural bionic design for thin-walled cylindrical shells is presented, of which the manufacturability is also taken into consideration. The comparison between the bionic thin-walled cylindrical shell and a simple hollow one with the same weight showed that the load-bearing efficiency was improved by 44.7 per cent.


Sign in / Sign up

Export Citation Format

Share Document