scholarly journals THE EFFECT OF PLASTICIZER ON MECHANICAL PROPERTIES OF THE CEMENT PASTE WITH FINE GROUND RECYCLED CONCRETE

2017 ◽  
Vol 13 ◽  
pp. 61 ◽  
Author(s):  
Jaromír Hrůza ◽  
Zdeněk Prošek

This article deals with the usage of recycled concrete, which arises from the demolition of concrete structures. The work is focused on the development of mechanical properties (Young's modulus, compressive and flexural strength) depending amount of plasticizer in the mixture. In the experiment were prepared three sets of samples with different amounts of plasticizer (0, 0.5 and 1.0 wt. % of cement). Each pair always contained reference samples (only cement) and 35 wt. % of fine ground recycled concrete. One of the main reasons for the use of finely ground recycled concrete was a certain substitution of cement in the mixture, which is the most expensive component. Development of Young's modulus was measured by the nondestructive method. The aim of the experiment was to determine the effect of plasticizer on the resulting physical and mechanical properties of cement pastes with fine ground recycled concrete.

2017 ◽  
Vol 1144 ◽  
pp. 22-27
Author(s):  
Jaromír Hrůza ◽  
Jaroslav Topič ◽  
Zdeněk Prošek

This article deals with the usage of recycled concrete, which arises from the demolition of concrete structures. The work is focused on the development of mechanical properties (Young's modulus) depending on the microstructure of composite cement based materials with different percentage of fine ground recycled concrete as a partial substitute of the filler in the cement mixture, which under certain circumstances also functions as a binder component. To assess of the microstructure there were used images from the optical and scanning electron microscopy. There were used four mixtures of the cement pastes containing 0, 33, 50 and 67 wt. % of finely ground recycled concrete. Development of Young's modulus was measured by nondestructive method. The results showed that of the captured images of surfaces of individual mixtures with increasing amounts of fine ground recycled concrete is seen an increasing amount of pores, which results in a loss of cohesion of the cement matrix and decrease of the Young's modulus.


Cerâmica ◽  
2020 ◽  
Vol 66 (377) ◽  
pp. 30-42
Author(s):  
P. C. Silva ◽  
L. P. Moreira ◽  
M. F. R. P. Alves ◽  
L. Q. B. Campos ◽  
B. G. Simba ◽  
...  

Abstract The objectives of this study were to characterize and evaluate the physical and mechanical properties of an experimental zirconia for dental application and compare the biaxial flexural strength results with the finite element simulation (FEM). Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic samples were sintered at 1475 °C/2 h and characterized by X-ray diffraction, scanning electron microscopy, relative density, flexural strength using piston-on-three balls (P-3B) test and Young’s modulus. From the flexural strength results, numerical simulations were performed using Abaqus software. The complete model used 70216 elements, considering the components of the test. The results indicated full densification of sintered samples, ZrO2-tetragonal and ZrO2-cubic as crystalline phases, and average grain size of 0.6±0.2 μm. Mechanical characterization of sintered samples indicated Young’s modulus of 195±4 GPa, flexural strength of 1191±9 MPa and Weibull modulus m=16.3. FEM simulation indicated a flexural strength close to 1100 MPa, with a difference lower than 7% in relation to the experimental results. The results were compared associating the physical and mechanical properties of Y-TZP with its intrinsic phenomena such as tgm transformation and ferroelastic domain.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


2015 ◽  
Vol 35 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Rahim Eqra ◽  
Kamal Janghorban ◽  
Habib Daneshmanesh

Abstract Because of extraordinary physical, chemical and mechanical properties, graphene nanosheets (GNS) are suitable fillers for optimizing the properties of different polymers. In this research, the effect of GNS content (up to 1 wt.%) on tensile and flexural properties, morphology of fracture surface, and toughening mechanism of epoxy were investigated. Results of mechanical tests showed a peak for tensile and flexural strength of samples with 0.1 wt.% GNS such that the tensile and flexural strength improved by 13% and 3.3%, respectively. The Young’s modulus and flexural modulus increased linearly with GNS content, although the behavior of the Young’s modulus was more remarkable. Morphological investigations confirmed this behavior because the GNS dispersion in the epoxy matrix was uniform at lower contents and agglomerated at higher contents. Finally, microscopical observation showed that the major toughening mechanism of graphene-epoxy nanocomposites was crack path deflection, which changed the mirror fracture surface of the pure epoxy to rough surface.


2013 ◽  
Vol 761 ◽  
pp. 83-86
Author(s):  
Hideaki Sano ◽  
Junichi Morisaki ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

Effects of carbon nanotubes (CNT) addition on mechanical properties, electric conductivity and oxidation resistance of CNT/Al2O3-TiC composite were investigated. It was found that flexural strength, Young’s modulus and fracture toughness of the composites were improved by addition of more than 2 vol%-CNT. In the composites with more than 3 vol%-CNT, the oxidation resistance of the composite was degraded. In comparison with Al2O3-26vol%TiC sample as TiC particle-percolated sample, the Al2O3-12vol%TiC-3vol%CNT sample, which is not TiC particle-percolated sample, shows almost the same mechanical properties and electric conductivity, and also shows thinner oxidized region after oxidation at 1200°C due to less TiC in the composite.


2020 ◽  
Author(s):  
Jackie E. Kendrick ◽  
Lauren N. Schaefer ◽  
Jenny Schauroth ◽  
Andrew F. Bell ◽  
Oliver D. Lamb ◽  
...  

Abstract. Volcanoes represent one of the most critical geological settings for hazard modelling due to their propensity to both unpredictably erupt and collapse, even in times of quiescence. Volcanoes are heterogeneous at multiple scales, from porosity which is variably distributed and frequently anisotropic to strata that are laterally discontinuous and commonly pierced by fractures and faults. Due to variable and, at times, intense stress and strain conditions during and post-emplacement, volcanic rocks span an exceptionally wide range of physical and mechanical properties. Understanding the constituent materials' attributes is key to improving the interpretation of hazards posed by the diverse array of volcanic complexes. Here, we examine the spectrum of physical and mechanical properties presented by a single dome-forming eruption at a dacitic volcano, Mount Unzen (Japan) by testing a number of isotropic and anisotropic lavas in tension and compression and using monitored acoustic emission (AE) analysis. The lava dome was erupted as a series of 13 lobes between 1991–1995, and its ongoing instability means much of the volcano and its surroundings remain within an exclusion zone today. During a field campaign in 2015, we selected 4 representative blocks as the focus of this study. The core samples from each block span range in porosity from 9.14 to 42.81 %, and permeability ranges from 1.54 × 10−14 to 2.67 × 10−10 m2 (from 1065 measurements). For a given porosity, sample permeability varies by > 2 orders of magnitude is lower for macroscopically anisotropic samples than isotropic samples of similar porosity. An additional 379 permeability measurements on planar block surfaces ranged from 1.90 × 10−15 to 2.58 × 10−12 m2, with a single block having higher standard deviation and coefficient of variation than a single core. Permeability under confined conditions showed that the lowest permeability samples, whose porosity largely comprises microfractures, are most sensitive to effective pressure. The permeability measurements highlight the importance of both scale and confinement conditions in the description of permeability. The uniaxial compressive strength (UCS) ranges from 13.48 to 47.80 MPa, and tensile strength (UTS) using the Brazilian disc method ranges from 1.30 to 3.70 MPa, with crack-dominated lavas being weaker than vesicle-dominated materials of equivalent porosity. UCS is lower in saturated conditions, whilst the impact of saturation on UTS is variable. UCS is between 6.8 and 17.3 times higher than UTS, with anisotropic samples forming each end member. The Young's modulus of dry samples ranges from 4.49 to 21.59 GPa and is systematically reduced in water-saturated tests. The interrelation of porosity, UCS, UTS and Young's modulus was modelled with good replication of the data. Acceleration of monitored acoustic emission (AE) rates during deformation was assessed by fitting Poisson point process models in a Bayesian framework. An exponential acceleration model closely replicated the tensile strength tests, whilst compressive tests tended to have relatively high early rates of AEs, suggesting failure forecast may be more accurate in tensile regimes, though with shorter warning times. The Gutenberg-Richter b-value has a negative correlation with connected porosity for both UCS and UTS tests which we attribute to different stress intensities caused by differing pore networks. b-value is higher for UTS than UCS, and typically decreases (positive Δb) during tests, with the exception of cataclastic samples in compression. Δb correlates positively with connected porosity in compression, and negatively in tension. Δb using a fixed sampling length may be a more useful metric for monitoring changes in activity at volcanoes than b-value with an arbitrary starting point. Using coda wave interferometry (CWI) we identify velocity reductions during mechanical testing in compression and tension, the magnitude of which is greater in more porous samples in UTS but independent of porosity in UCS, and which scales to both b-value and Δb. Yet, saturation obscures velocity changes caused by evolving material properties, which could mask damage accrual or source migration in water-rich environments such as volcanoes. The results of this study highlight that heterogeneity and anisotropy within a single system not only add uncertainty but also have a defining role in the channelling of fluid flow and localisation of strain that dictate a volcano's hazards and the geophysical indicators we use to interpret them.


2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


2011 ◽  
Vol 8 (2) ◽  
pp. 551-560
Author(s):  
Baghdad Science Journal

In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.5 MPa) and Young's modulus (5.1 GPa) as compared with other composites at (N.C). The results showed that the wet samples of sawdust composite have lowest values of weight gain (Mt %) of water (0.043%) as compared with other composites after immersion. Also it’s showed a slight decrease in values of Young's modulus for all the samples after immersion as compared with the samples at (N.C). Finally it’s showed a slight decrease in values of flexural strength for all the samples except for the composite material formed from UPE / chopped reeds which showed an increase in the value of flexural strength after immersion, where the wet samples of UPE / chopped reeds composite gained (29 MPa) as compared with the samples at (N.C).


Author(s):  
Fumitada Iguchi ◽  
Hiromichi Kitahara ◽  
Hiroo Yugami

The mechanical properties of Ni-YSZ cermets at high temperature in reduction atmosphere were evaluated by the four points bending method. We studied the influences of reduction and thermal cycles, i.e. a cycle from R.T. to 800°C, to flexural strength and Young’s modulus. The flexural strength of Ni-YSZ at room temperature was lower than that of NiO-YSZ by about 10 to 20% mainly caused by the increment of porosity. But, the flexural strength of Ni-YSZ at 800°C was drastically decreased by an half of that at R.T. In addition, the stress–strain diagram of Ni-YSZ at 800°C indicated that it showed weak ductility. The maximum observed strain was over 0.5% at 30MPa. On the contrary, NiO-YSZ showed only brittlely at 800°C. The difference was caused by Ni metal in the Ni-YSZ cermets. Therefore, it was expected that Ni-YSZ is easily deformed in operation, though residual stress between an anode and an electrolyte was low. The influence of thermal cycles to flexural strength and Young’s modulus was not observed clearly. At the same time, the differences of microstructure were not observed. Therefore, it was concluded that the cycle does not change mechanical properties significantly.


2006 ◽  
Vol 510-511 ◽  
pp. 1014-1017 ◽  
Author(s):  
Won Seung Cho ◽  
Ki Ju Lee ◽  
Myeong Woo Cho ◽  
Jae Hyung Lee ◽  
Woon Suk Hwang

The effects of hBN content on microstructure, mechanical properties, and machinability of the pressureless-sintered Si3N4 ceramics were investigated. Flexural strength, Young’s modulus, and hardness decreased with increasing h-BN content. The mechanical properties are decreased mainly because of increased porosity of composite, and the much lower Young's modulus of BN compared to that of Si3N4. Pressureless-sintered Si3N4/hBN composites exhibit strong texture of BN grains oriented with the c-axis parallel to the cold-pressing direction. Cutting resistance of Si3N4 ceramic composites with more than 10 vol% hBN decreased with increasing hBN content, demonstrating a good machinability of the composites. The residual pores can be attributed to improved machinability of pessureless-sintered Si3N4-BN composite.


Sign in / Sign up

Export Citation Format

Share Document