Development of an Object Scanning System for Storing the High Definition 3D Data of the Planar and Non-Planar Surfaces

Author(s):  
Chalermyos Thiengchanya ◽  
Tanasai Sucontphunt
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianying Yuan ◽  
Qiong Wang ◽  
Xiaoliang Jiang ◽  
Bailin Li

The multiview 3D data registration precision will decrease with the increasing number of registrations when measuring a large scale object using structured light scanning. In this paper, we propose a high-precision registration method based on multiple view geometry theory in order to solve this problem. First, a multiview network is constructed during the scanning process. The bundle adjustment method from digital close range photogrammetry is used to optimize the multiview network to obtain high-precision global control points. After that, the 3D data under each local coordinate of each scan are registered with the global control points. The method overcomes the error accumulation in the traditional registration process and reduces the time consumption of the following 3D data global optimization. The multiview 3D scan registration precision and efficiency are increased. Experiments verify the effectiveness of the proposed algorithm.


2011 ◽  
Vol 38 (6Part35) ◽  
pp. 3855-3855
Author(s):  
J Farr ◽  
F Dessy ◽  
D Schoenenberg ◽  
Y Claereboudt ◽  
O Bietzer ◽  
...  

2017 ◽  
Vol 29 (6) ◽  
pp. 857-867 ◽  
Author(s):  
Miyeon Lee ◽  
Dong Il Yoo ◽  
Sungmin Kim

Purpose The purpose of this paper is to develop a relatively inexpensive and easily movable three-dimensional (3D) body scanner. Design/methodology/approach Multiple depth perception cameras and a turntable were used to form the hardware and a client-server computer network was used to control the hardware. Findings A portable and inexpensive yet quite accurate body scanner system has been developed. Research limitations/implications The turntable mechanism and semi-automatic model alignment caused some error. Practical implications This scanner is expected to facilitate the acquisition of 3D human body or garment data easily for various research projects. Social implications Many researchers might have an easy access to 3D data of large object such as body or whole garment. Originality/value Inexpensive yet expandable scanning system has been developed using readily available components.


2019 ◽  
Author(s):  
Takuro Ogura ◽  
Yuichi S. Hayakawa ◽  
Hiroyuki Yamauchi ◽  
Takashi Oguchi ◽  
Yasuhiko Tamura ◽  
...  

2019 ◽  
Vol 8 (12) ◽  
pp. 565 ◽  
Author(s):  
Diana Sousa Guedes ◽  
Hélder Ribeiro ◽  
Neftalí Sillero

Roads represent a major source of mortality for many species. To mitigate road mortality, it is essential to know where collisions with vehicles are happening and which species and populations are most affected. For this, moving platforms such as mobile mapping systems (MMS) can be used to automatically detect road-killed animals on the road surface. We recently developed an MMS to detect road-killed amphibians, composed of a scanning system on a trailer. We present here a smaller and improved version of this system (MMS2) for detecting road-killed amphibians and small birds. It is composed of a stereo multi-spectral and high definition camera (ZED), a high-power processing laptop, a global positioning system (GPS) device, a support device, and a lighter charger. The MMS2 can be easily attached to any vehicle and the surveys can be performed by any person with or without sampling skills. To evaluate the system’s effectiveness, we performed several controlled and real surveys in the Évora district (Portugal). In real surveys, the system detected approximately 78% of the amphibians and birds present on surveyed roads (overlooking 22%) and generated approximately 17% of false positives. Our system can improve the implementation of conservation measures, saving time for researchers and transportation planning professionals.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5352
Author(s):  
López-Cuervo Medina ◽  
Pérez-Martín ◽  
Herrero Tejedor ◽  
Prieto ◽  
Velasco ◽  
...  

In this study, a backpack-mounted 3D mobile scanning system and a fixed-wing drone (UAV) have been used to register terrain data on the same space. The study area is part of the ancient underground cellars in the Duero Basin. The aim of this work is to characterise the state of the roofs of these wine cellars by obtaining digital surface models (DSM) using the previously mentioned systems to detect any possible cases of collapse, using four geomatic products obtained with these systems. The results obtained from the process offer sufficient quality to generate valid DSMs in the study area or in a similar area. One limitation of the DSMs generated by backpack MMS is that the outcome depends on the distance of the points to the axis of the track and on the irregularities in the terrain. Specific parameters have been studied, such as the measuring distance from the scanning point in the laser scanner, the angle of incidence with regard to the ground, the surface vegetation, and any irregularities in the terrain. The registration speed and the high definition of the terrain offered by these systems produce a model that can be used to select the correct conservation priorities for this unique space.


Author(s):  
R. Miyazaki ◽  
M. Yamamoto ◽  
E. Hanamoto ◽  
H. Izumi ◽  
K. Harada

Planar structure detection from point clouds is important process in many applications such as maintenance of infrastructure facility including roads and curbs because most artificial structures consists of planar surfaces. The Mobile Mapping System can obtain a large amount of points with traveling at a standard speed. However, in the case that the high-end laser scanning system is equipped, the distribution density of points is uneven. In the point-based method, this situation causes the problem to the method of calculating geometric information using neighborhood points. In this paper, we propose a line-based region growing method in order to detect planar structures with precise boundary from point clouds with uneven distribution density of points. The precise boundary of a planar structure is maintained by appropriately creating line segments from the input clouds. We adapt the definition of neighborhood and the estimation of the normal vector to the line-based region growing. The evaluation by comparing our result with manually extracted points shows that more than 98% of curb points are detected. And, about 90% of the boundary points between a road and a curb are detected with less than 0.005 meters of the distance error.


2013 ◽  
pp. 939-956
Author(s):  
Nikolaus Karpinsky ◽  
Song Zhang

As 3D becomes more ubiquitous with the advent of 3D scanning and display technology, methods of compressing and transmitting 3D data need to be explored. One method of doing such is depth mapping, in which 3D depth data is compressed into a 2D image, and then 2D image processing techniques may be leveraged. This chapter presents a technique of depth mapping 3D scenes into 2D images, entitled Holoimage. In this technique, digital fringe projection, a special kind of structured light technique from optical metrology, is used to encode and decode 3D scenes pixel-by-pixel. Due to the pixel-by-pixel 3D data processing nature, this technique can be used on parallel hardware to realize real-time speed for high definition 3D video encoding and decoding.


Author(s):  
Nikolaus Karpinsky ◽  
Song Zhang

As 3D becomes more ubiquitous with the advent of 3D scanning and display technology, methods of compressing and transmitting 3D data need to be explored. One method of doing such is depth mapping, in which 3D depth data is compressed into a 2D image, and then 2D image processing techniques may be leveraged. This chapter presents a technique of depth mapping 3D scenes into 2D images, entitled Holoimage. In this technique, digital fringe projection, a special kind of structured light technique from optical metrology, is used to encode and decode 3D scenes pixel-by-pixel. Due to the pixel-by-pixel 3D data processing nature, this technique can be used on parallel hardware to realize real-time speed for high definition 3D video encoding and decoding.


Sign in / Sign up

Export Citation Format

Share Document