scholarly journals Investigation on airfoil operating in Ground Effect region

2014 ◽  
Vol 3 (4) ◽  
pp. 540 ◽  
Author(s):  
Nikhil Pillai ◽  
Anil T. ◽  
Aravind Radhakrishnan ◽  
Rahul Vinod ◽  
Sudheesh Kumar E. ◽  
...  

The idea of using a wing in ground effect vehicle has been suggested with the objective of developing a very economical and efficient means of rapid transportation across water bodies. This paper investigates into wing in ground effect airfoil geometry. ANSYS is used to perform the CFD analysis of the airfoils. CFD analysis has been performed on various airfoils operating in the ground effect region and a special class of airfoil called DHMTU has been found to have maximum aerodynamic efficiency. The DHMTU studied here is DHMTU 8-40-2-10-3-6-2-15. Aerodynamic efficiency for this particular airfoil has been determined through CFD analysis at various angles of attack. It has been found that the DHMTU possesses superior aerodynamic efficiency at low angle of attack and the maximum aerodynamic efficiency is found at 60 angle of attack. From CFD analysis it has also been determined that as the proximity to the ground reduces, the value of lift increases. The characteristics of this airfoil at various air speeds have also been determined through CFD analysis. These studies have illustrated the unique characteristics of the DHMTU airfoils and indicated areas for further optimization of the design of ground effect airfoils. The use of this airfoil for the ground effect vehicle can further lead to increase in efficiency of the craft.Abbreviations:CFD                        Computational Fluid DynamicsDHMTU                Department Of Hydro-Mechanics of the Marine Technical UniversityNACA                    National Advisory Committee on AeronauticsL/D                         Lift to Drag RatioWIG                       Wing in GroundV                             Free stream velocityRe                           Reynolds number h/c                          Height to Chord RatioCL                          Coefficient of liftCD                          Coefficient of dragAOA                       Angle Of Attack

2018 ◽  
Vol 7 (2-1) ◽  
pp. 433
Author(s):  
K. Sri Vamsi Krishna ◽  
Shiva Prasad ◽  
R. Sabari Vihar ◽  
K. Babitha ◽  
K Veeranjaneyulu ◽  
...  

The main objective of this study is to increase the aerodynamic efficiency of turbine mounted novel wing. The main motive behind this work is to reduce the drag by attaining the positive velocity gradient and generate power by converting the stagnation pressure which also acts as emergency power source. By using the energy source of free stream air, Mechanical energy is converted into electrical energy. The obtained power is presented in terms of voltage generated at various angles of attack with different Reynolds number. Experimental analysis is carried out for NACA4415 airfoil at various angles with respect to free stream ranging from 0deg to 30deg from laminar to turbulent Reynolds number. The results were obtained using the research tunnel at IARE aerodynamic facility center. The aerodynamic advantage of this design in terms of voltage is 9.5 V at 35m/s which can be utilized for the aircraft on board power systems.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Sammy Diasinos ◽  
Tracie J. Barber ◽  
Graham Doig

A numerical-based (Reynolds-averaged Navier–Stokes (RANS)) investigation into the role of span and wing angle in determining the performance of an inverted wing in ground effect located forward of a wheel is described, using a generic simplified wheel and NACA 4412 geometry. The complex interactions between the wing and wheel flow structures are investigated to explain either increases or decreases for the downforce and drag produced by the wing and wheel when compared to the equivalent body in isolation. Geometries that allowed the strongest primary wing vortex to pass along the inner face of the wheel resulted in the most significant reductions in lift and drag for the wheel. As a result, the wing span and angle combination that would produce the most downforce, or least drag, in the presence of the wheel does not coincide with what would be assumed if the two bodies were considered only in isolation demonstrating the significance of optimizing these two bodies in unison.


Author(s):  
T Lee ◽  
D Huitema ◽  
P Leite

The ground effect on the aerodynamic coefficients of a cropped slender reverse delta wing equipped with anhedral and Gurney flaplike side-edge strips was investigated experimentally at Re = 3.82 × 105. In a free stream, the 30% cropping was found to cause a minor reduction in lift CL and drag CD coefficients but a promoted stall compared to the noncropped wing. The anhedral caused further CL decrease and CD increase. Meanwhile, the application of side-edge strips produced a significantly increased CL and CD with a minor change to the CL/ CD ratio as compared to the baseline wing. In ground effect, the cropped wing was, however, found to generate more lift compared to the noncropped wing as the ground was approached. The joint anhedral and SES produced a great increment in both CL and CD but a virtually unchanged CL/ CD ratio compared to their outside ground effect counterparts. The larger the side-edge strips’ height the larger the increase in CL. In short, the cropping led to a weight reduction while the addition of anhedral and SES produced a large lift augmentation of the Lippisch-type wing-in-ground effect craft.


2015 ◽  
Author(s):  
Cornelis Bil ◽  
Man Chiu Fung ◽  
Sherman C.P. Cheung ◽  
Piergiovanni Marzocca

2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun Abdul Malek ◽  
Shuhaimi Mansor ◽  
Nor Azwadi Che Sidik ◽  
Agoes Priyanto

Wing configuration is a parameter that affects the performance of wing-in-ground effect (WIG) craft. In this study, the aerodynamic characteristics of a new compound wing were investigated during ground effect. The compound wing was divided into three parts with a rectangular wing in the middle and two reverse taper wings with anhedral angle at the sides. The sectional profile of the wing model is NACA6409. The experiments on the compound wing and the rectangular wing were carried to examine different ground clearances, angles of attack, and Reynolds numbers. The aerodynamic coefficients of the compound wing were compared with those of the rectangular wing, which had an acceptable increase in its lift coefficient at small ground clearances, and its drag coefficient decreased compared to rectangular wing at a wide range of ground clearances, angles of attack, and Reynolds numbers. Furthermore, the lift to drag ratio of the compound wing improved considerably at small ground clearances. However, this improvement decreased at higher ground clearance. The drag polar of the compound wing showed the increment of lift coefficient versus drag coefficient was higher especially at small ground clearances. The Reynolds number had a gradual effect on lift and drag coefficients and also lift to drag of both wings. Generally, the nose down pitching moment of the compound wing was found smaller, but it was greater at high angle of attack and Reynolds number for all ground clearance. The center of pressure was closer to the leading edge of the wing in contrast to the rectangular wing. However, the center of pressure of the compound wing was later to the leading edge at high ground clearance, angle of attack, and Reynolds number.


Author(s):  
Ashraf Omar ◽  
Rania Rahuma ◽  
Abdulhaq Emhemmed

In this work, the aerodynamic performance of four types of bird’s airfoils (eagle, stork, hawk, and albatross) at low Reynolds number and a range of angles of attack during fixed (unflapping) gliding flight was numerically investigated utilizing open-source computational fluid dynamics (CFD) code Stanford University unstructured (SU2) and K-ω Shear Stress Transport (K-ω SST) turbulence model. The flow of the simulated cases was assumed to be incompressible, viscous, and steady. For verification and comparison, a low Reynolds number man-made Eppler 193’s airfoil was simulated. The results revealed that stork has the greatest aerodynamic efficiency followed by albatross and eagle. However, at zero angle of attack, the albatross aerodynamic efficiency exceeded all the other birds by a significant amount. In terms of aerodynamics efficiency, stork’s and albatross’s airfoils performed better than Eppler 193 at angles of attack less than 8°, while at a higher angle of attack all studied birds’ airfoils performed better than Eppler 193. The effect of surface permeability was also investigated for the eagle’s airfoil where the permeable surface occupied one-third of the total airfoil surface. Permeability increased the generated lift and the aerodynamic efficiency of the eagle’s airfoil for angles of attack less than 10°. The increase reached 58% for the lift at zero angle of attack. After the specified angle, the permeability had an adverse effect on the flow which may be due to the transition to turbulent ahead of the permeable section.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 467
Author(s):  
Hui Tang ◽  
Yulong Lei ◽  
Xingzhong Li ◽  
Ke Gao ◽  
Yanli Li

The effect of the number of waves and the width of the ridge and valley in chord direction for a wavy airfoil was investigated at the angle of attack of 0 ∘ and Reynolds number of 10 3 through using the two-dimensional direct numerical simulation for four kinds of wavy airfoil shapes. A new method for parameterizing a wavy airfoil was proposed. In comparison with the original corrugated airfoil profile, the wavy airfoils that have more distinct waves show a lower aerodynamic efficiency and the wavy airfoils that have less distinct waves show higher aerodynamic performance. For the breakdown of the lift and drag concerning the pressure stress and friction stress contributions, the pressure stress component is significantly dominant for all wavy airfoil shapes concerning the lift. Concerning the drag, the pressure stress component is about 75 % for the wavy airfoils that have more distinct waves, while the frictional stress component is about 70 % for the wavy airfoils that have less distinct waves. From the distribution of pressure isoline and streamlines around wavy airfoils, it is confirmed that the pressure contributions of the drag are dominant due to high pressure on the upstream side and low pressure on the downside; the frictional contribution of the drag is dominant due to large surface areas of the airfoil facing the external flow. The effect of the angle of attack on the aerodynamic efficiency for various wavy airfoil geometries was studied as well. Aerodynamic shape optimization based on the continuous adjoint approach was applied to obtain as much as possible the highest global aerodynamic efficiency wavy airfoil shape. The optimal airfoil shape corresponds to an increase of 60 % and 62 % over the aerodynamic efficiency and the lift from the initial geometry, respectively, when optimal airfoil has an approximate drag coefficient compared to the initial geometry. Concerning an fixed angle of attack, the optimal airfoil is statically unstable in the range of the angle of attack from − 1 ∘ to 6 ∘ , statically quasi-stable from − 6 ∘ to − 2 ∘ , where the vortex is shedding at the optimal airfoil leading edge. Concerning an angle of attack passively varied due to the fluid force, the optimal airfoil keeps the initial angle of attack value with an initial disturbance, then quickly increases the angle of attack and diverges in the positive direction.


Author(s):  
Stanisław WRZESIEŃ ◽  
Michał FRANT ◽  
Maciej MAJCHER

This paper presents the numerical evaluation of ground (proximity) effects on the basic aerodynamic characteristics of a specifically designed airplane model. The ground effects were investigated in relation to the angle of attack and flight altitude. The results were referenced to the characteristics of an object in motion unaffected by ground effects.


2018 ◽  
Vol 22 (2) ◽  
pp. 963-972 ◽  
Author(s):  
Jitesh Rana ◽  
Anshuman Silori ◽  
Rajesh Maithani ◽  
Sunil Chamoli

A CFD analysis of a solar air heater has been carried out using V-shaped ribs as artificial roughness on the absorber plate. The relative roughness pitch, P/e = 6-12, Reynolds number of 3800-18000, relative roughness height, e/D = = 0.042, and angle of attack, ? = 30?-75?, have been selected as design variables of V-shaped rib for analysis. The ANSYS FLUENT 15.0 with renormalization group k-? turbulence model is selected for the analysis of computational domain of solar air heater. The enhancement of Nusselt number and friction factor with Reynolds number for different values of a relative roughness pitch are presented and discussed by CFD analysis. The effect of angle of attack and Reynolds number on enhancement of Nusselt number and friction factor is also presented. The optimum value of rib configuration based on constant pumping power requirement has been derived using thermohydraulic performance parameter and has been found maximum at angle of attack of 60? and P/e = 10.


Sign in / Sign up

Export Citation Format

Share Document