scholarly journals Emergency Node Based Fault Tolerance in Wireless Sensor Networks

2018 ◽  
Vol 7 (2.24) ◽  
pp. 504
Author(s):  
T Gobinath ◽  
A Tamilarasi

In Wireless Sensor Network (WSN), fault occur due to node failure, malicious attack and link failure. Link failure causes the loss of sensitive data in a network leads to the emergency situation and influence generated and incoming data resulting in high probability of erroneous data, false packet transmission, wrong decision making and rigorous communication interruption. It leads to increase of traffic overhead and faulty node count in the network. In order to avoid this problem Emergency Node(EN) based process is proposed. Simulation clearly shows that the proposed method increased the packet delivery ratio and decreased the average delay, Energy consumption in WSN.

This paper develops a method to detect the failures of wireless links between one sensor nodes to another sensor node in WSN environment. Every node in WSN has certain properties which may vary time to time based on its ability to transfer or receive the packets on it. This property or features are obtained from every node and they are classified using Neural Networks (NN) classifier with predetermined feature set which are belonging to both weak link and good link between nodes in wireless networks. The proposed system performance is analyzed by computing Packet Delivery Ratio (PDR), Link Failure Detection Rate (LFDR) and latency report.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Ana Oktaviana ◽  
Doan Perdana ◽  
Ridha Muldina Negara

The increasing needs and demands of diverse services by the users to be able to exchange and obtain information in real time, reliable, and flexible to be one of the problems faced by existing communication technology. WLAN on the IEEE 802.11 standard is one of the wireless technologies that can be the solution of the problem. It has a relatively small area of ??communication that is between 20-70 meters only, only able to serve up to 2007 stations, and has considerable energy consumption, causing some systems contained in the WLAN in IEEE 802.11 standard less work maximally. With these shortcomings, the WLAN on the IEEE 802.11 standard introduces a new task group called IEEE 802.11ah. IEEE 802.11ah is a new WLAN standard working on the 900 MHz frequency spectrum, a 1 kilometer communications coverage area, capable of serving 8192 stations with new AID hierarchies, has lower energy consumption and can increase throughput value by RAW mechanism. This study will make changes to the number of RAW slots in the IEEE 802.11ah to see how they affect the network performance. In this research it is found that the change of RAW slot number influence to network performance, in this case is throughput, average delay, packet delivery ratio and energy consumption.


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 6-14
Author(s):  
Shaymaa Kadhim Mohsin ◽  
Maysoon A. Mohammed ◽  
Helaa Mohammed Yassien

Bluetooth uses 2.4 GHz in ISM (industrial, scientific, and medical) band, which it shares with other wireless operating system technologies like ZigBee and WLAN. The Bluetooth core design comprises a low-energy version of a low-rate wireless personal area network and supports point-to-point or point-to-multipoint connections. The aim of the study is to develop a Bluetooth mesh flooding and to estimate packet delivery ratio in wireless sensor networks to model asynchronous transmissions including a visual representation of a mesh network, node-related statistics, and a packet delivery ratio (PDR). This work provides a platform for Bluetooth networking by analyzing the flooding of the network layers and configuring the architecture of a multi-node Bluetooth mesh. Five simulation scenarios have been presented to evaluate the network flooding performance. These scenarios have been performed over an area of 200×200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes. The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The results include probability calculation of getting a linking between two nodes based on Monte Carlo method, which was 88.7428 %, while the Average-hop-count linking between these nodes was 8. Based on the conducted survey, this is the first study to examine and demonstrate Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks


Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


Author(s):  
Geetanjali Rathee ◽  
Hemraj Saini

Secure routing is considered as one of a key challenge in mesh networks because of its dynamic and broadcasting nature. The broadcasting nature of mesh environment invites number of security vulnerabilities to come and affect the network metrics drastically. Further, any node/link failure of a routed path may reduce the performance of the entire network. A number of secure routing protocols have been proposed by different researchers but enhancement of a single network parameter (i.e. security) may affect another performance metrics significantly i.e. throughput, end to end delay, packet delivery ratio etc. In order to ensure secure routing with improved network metrics, a Secure Buffer based Routing Protocol i.e. SBRP is proposed which ensures better network performance with increased level of security. SBRP protocol uses buffers at alternate positions to fasten re-routing mechanism during node/link failure and ensures the security using AES encryption. Further the protocol is analyzed against mAODV protocol in both static and dynamic environment in terms of security, packet delivery ratio, end to end delay and network throughput.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6743
Author(s):  
Fan Zhang ◽  
Gangqiang Yang

High-speed mobility and heavy-load traffic in mobile Ad hoc networks (MANET) may result in frequent topology changes and packet loss. To guarantee packet delivery, a novel stable backup routing (SBR) scheme is put forward in this paper, which consists of the establishment of backup routes and route maintenance. In SBR, backup routes are set up by overhearing MAC signals, and the bit error rate is considered in path selection for improving stability. To repair broken links effectively and reasonably, qualified backup routes are classified into three categories with different priorities, based on which the relevant nodes decide how to reconstruct the forwarding path. Extensive simulations demonstrate that our proposed method outperforms other comparable backup routing mechanisms in terms of packet delivery ratio, average delay and control overhead.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mostofa Kamal Nasir ◽  
Rafidah Md. Noor ◽  
Mohsin Iftikhar ◽  
Muhammad Imran ◽  
Ainuddin Wahid Abdul Wahab ◽  
...  

Vehicular ad hoc networks (VANETs) are getting growing interest as they are expected to play crucial role in making safer, smarter, and more efficient transportation networks. Due to unique characteristics such as sparse topology and intermittent connectivity, Delay Tolerant Network (DTN) routing in VANET becomes an inherent choice and is challenging. However, most of the existing DTN protocols do not accurately discover potential neighbors and, hence, appropriate intermediate nodes for packet transmission. Moreover, these protocols cause unnecessary overhead due to excessive beacon messages. To cope with these challenges, this paper presents a novel framework and an Adaptive Geographical DTN Routing (AGDR) for vehicular DTNs. AGDR exploits node position, current direction, speed, and the predicted direction to carefully select an appropriate intermediate node. Direction indicator light is employed to accurately predict the vehicle future direction so that the forwarding node can relay packets to the desired destination. Simulation experiments confirm the performance supremacy of AGDR compared to contemporary schemes in terms of packet delivery ratio, overhead, and end-to-end delay. Simulation results demonstrate that AGDR improves the packet delivery ratio (5–7%), reduces the overhead (1–5%), and decreases the delay (up to 0.02 ms). Therefore, AGDR improves route stability by reducing the frequency of route failures.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.


Repositor ◽  
2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Hawwin Purnama Akbar ◽  
Diah Risqiwati ◽  
Diah Risqiwati

Perkembangan ilmu pengetahuan pada bidang teknologi jaringan terjadi sangat cepat karena mengikuti perkembangan kebutuhan manusia. Salah satu teknologi jaringan yang saat ini menarik perhatian masyarakat adalah teknologi Wireless Sensor Network(WSN). WSN adalah jaringan dari kumpulan sensor yang terhubung menggunakan teknologi wireless secara ad-hoc dan setiap sensor node digunakan untuk proses pengumpulan data dan menghubungkan dengan node yang lain melalui jaringan wireless.Karena pada kebanyakan kasus aplikasi WSN digunakan pada lingkungan yang ekstrem dan sensor node harus dapat beroperasi secara otomatis tanpa campur tangan manusia, jaringan ini menjadi rentan akan beberapa ancaman jaringan dan dapat mempengaruhi performa dari jaringannya. Terdapat berbagai macam jenis serangan yang dapat membahayakan jaringan wireless sensor network diantaranya yang paling umum adalah sybil attack dan hello flood attack.            Dalam penelitian ini, penulis meneliti performa WSN saat diserang oleh Sybil attack dan hello flood attack dengan cara mengukur throughput, PDR(packet delivery ratio), jitter dan delay dalam jaringan WSN. Penelitian ini juga menganalisa jumlah node yang bervariasi dari 10 node sampai 30 node dengan waktu simulasi dari 10 detik sampai 30 detik lalu dianalisa jaringan ketika jaringan normal dan diserang oleh node penyerang yang bervariasi dari 1 sampai 3 penyerang. Dengan melakukan analisa tersebut, diperoleh data berupa perbandingan dampak serangan dari Sybil attack dan hello flood attack. Dampak dari sybil attack lebih berpengaruh pada parameter throughput dan pdr yang mengalami penurunan nilai hingga 69,9% untuk pdr dan 56,4% untuk throughput. Sedangkan dampak dari hello flood attack lebih berpengaruh pada parameter delay dan jitter yang mengalami kenaikandari nilai semula 0,05 detik menjadi 0,576 detikuntuk delay dan 0,579 detik untuk jitter.AbstractThe development of science in the field of network technology occurs very quickly because it follows the development of human needs. One of the network technology that is currently attracting public attention is wireless sensor network technology (WSN). WSN is a network of connected sensors using ad-hoc wireless technology and each node sensor are used to process data collection and connect with other nodes over a wireless network. Because in most cases WSN applications are used in extreme environments and node sensors must operate automatically without human intervention, these networks become vulnerable to some network threats and may affect the performance of their networks. There are various types of attacks that can harm wireless sensor network network among the most common is sybil attack and hello flood attack.             In this study, authors examined the performance of WSN when attacked by Sybil attack and hello flood attack by measuring throughput, PDR (packet delivery ratio), jitter and delay in WSN network. This study also analyzed the number of nodes that varied from 10 nodes to 30 nodes with simulated time from 10 seconds to 30 seconds and then analyzed the network when the network was normal and attacked by the attacking nodes that varied from 1 to 3 attackers. By doing the analysis, the datacan be obtained in the form of comparison of the impact of attacks from Sybil attack and hello flood attack. The impact of the sybil attack is more influential on the parameters of throughput and pdr which has decreased the maximum value up to 69.9% for pdr and 56.4% for throughput. While the impact of hello flood attack ismore influential on the delay and jitter parameters that increased from the original value of 0.05 seconds to 0.576 seconds for delay and 0.579 seconds for jitter. 


Sign in / Sign up

Export Citation Format

Share Document