scholarly journals A super wideband circular-shaped fractal antenna loaded with concentric hexagonal slots

2018 ◽  
Vol 7 (3.29) ◽  
pp. 211 ◽  
Author(s):  
Srinivasarao Alluri ◽  
Nakkeeran Rangaswamy

This article presents a super wideband (SWB) circular-shaped fourth iterative fractal antenna loaded with concentric hexagonal slots. A tapered microstrip feed and a partial ground plane is used. It has a total size of 40 × 27 × 1.6 mm3. Numerical results of the antenna show that it provides a bandwidth from 1.43 GHz to more than 40 GHz (percentage bandwidth greater than 186%) with a bandwidth ratio of approximately greater than 28:1 for S11 < -10 dB. A prototype of the proposed antenna has been fabricated and its performances are measured up to 15 GHz. A good agreement is achieved between the numerical and experimental reflection coefficient, VSWR and input impedance. Measured radiation patterns at different frequencies and simulated peak gain are presented and discussed. It has the advantages of super wide bandwidth and compact size. The developed antenna is suitable for various wireless communications such as GPS, GSM, UMTS, ISM and UWB.  

Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 99-108
Author(s):  
Robert Mark ◽  
Nipun Mishra ◽  
Kaushik Mandal ◽  
Partha Pratim Sarkar ◽  
Soma Das

Abstract A compact hexagonal nested loop fractal antenna with L shaped slot on the ground plane is presented for multiband applications. In this paper, the effect of fractal iterations and position of L-slot on ground plane are optimized for better performance of the antenna. Multiple hexagon loops excite multiple resonant modes at 1.7, 2.4, 3.1, 4.5 and 6 GHz and an L-shaped slot on the ground plane helps to achieve wide bandwidth response with better impedance matching in the 4.25–6.41 GHz frequency band. An equivalent circuit of the proposed antenna is modelled and the same is verified using ADS. Reflection coefficient and radiation pattern are presented to further confirm the performance of the proposed design for wireless applications. The proposed antenna is fabricated on a low-cost FR4 substrate of dimensions 40×32×1.6 mm3 and measured results show good agreement with simulation results.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 202 ◽  
Author(s):  
Xiaobo Zhang ◽  
Saeed Ur Rahman ◽  
Qunsheng Cao ◽  
Ignacio Gil ◽  
Muhammad Irshad khan

In this paper, a wideband antenna was designed for super-wideband (SWB) applications. The proposed antenna was fed with a rectangular tapered microstrip feed line, which operated over a SWB frequency range (1.42 GHz to 50 GHz). The antenna was implemented at a compact size with electrical dimensions of 0.16 λ × 0.27 λ × 0.0047 λ mm3, where λ was with respect to the lowest resonance frequency. The proposed antenna prototype was fabricated on a F4B substrate, which had a permittivity of 2.65 and 1 mm thickness. The SWB antenna exhibited an impedance bandwidth of 189% and a bandwidth ratio of 35.2:1. Additionally, the proposed antenna design exhibited three band notch characteristics that were necessary to eradicate interference from WLAN, WiMAX, and X bands in the SWB range. One notch was achieved by etching an elliptical split ring resonator (ESRR) in the radiator and the other two notches were achieved by placing rectangular split ring resonators close to the signal line. The first notch was tuned by incorporating a varactor diode into the ESRR. The prototype was experimentally validated with, with notch and without notch characteristics for SWB applications. The experimental results showed good agreement with simulated results.


2017 ◽  
Vol 6 (3) ◽  
pp. 64
Author(s):  
R. Sahoo ◽  
D. Vakula

In this paper, a novel wideband conformal fractal antenna is proposed for GPS application. The concepts of fractal and partial ground are used in conformal antenna design for miniaturization and bandwidth enhancement. It comprises of Minkowski fractal patch on a substrate of Rogers RT/duroid 5880 with permittivity 2.2 and thickness of 0.787mm with microstrip inset feed. The proposed conformal antenna has a patch dimension about 0.39λmm×0.39λmm, and partial ground plane size is 29mm×90mm.The proposed antenna is simulated, fabricated and measured for both planar and conformal geometry, with good agreement between measurements and simulations. The size of the fractal patch is reduced approximately by 32% as compared with conventional patch. It is observed that the conformal antenna exhibits a fractional bandwidth(for the definition of -10dB) of 43.72% operating from 1.09 to 1.7GHz, which is useful for L1(1.56-1.58GHz), L2(1.21-1.23GHz), L3(1.37-1.39GHz), L4(1.36-1.38GHz), and L5(1.16-1.18 GHz) in GPS and Galileo frequencies: E=1589.742MHz(4MHzbandwidth), E2=1561. 098MHz(4MHzbandwidth), E5a=1176.45MHz(=L5),E5b= 1207.14MHz, and E6=1278.75MHz(40MHz bandwidth). The radiation pattern exhibits an omnidirectional pattern, and gain of proposed antenna is 2.3dBi to 3.5dBi within operating frequency range.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2019 ◽  
Vol 16 (10) ◽  
pp. 4242-4248
Author(s):  
Manoj Kapil ◽  
Manish Sharma

In this research article, a compact MIMO (Multiple-Input-Multiple-Output) antenna with inclusion of two notched bands characteristics is presented. Designed MIMO antenna consist of dual radiating patches printed on one surface of the substrate which covers measured wide impedance bandwidth of 2.88 GHz–19.98 GHz and satisfies bandwidth ratio more than 10:1 for superwideband with compact size of 18 mm × 34 mm. Two radiating patch are placed symmetrically for MIMO configuration and notched bands to eliminate WiMAX/C and WLAN bands are obtained by attaching inverted T-shaped stub on radiating patch and etched inverted U-shape slit in microstrip feed. Isolation between the two radiating patch is maintained by adding two L-shaped stub in slotted rectangular ground plane. Measured radiation pattern are stable in operating band and offers maximum 4.23 dBi and 89% gain and radiation efficiency respectively. Moreover, antenna shows good diversity performance with Envelope-Correlation-Coefficient (ECC) < 0.5, Directive-Gain (DG) > 9.95 dB and Total-Active-Reflection Coefficient (TARC) < -30 dB.


2016 ◽  
Vol 9 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Yogesh Kumar Choukiker ◽  
Jagadish Chandra Mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.


2018 ◽  
Vol 7 (5) ◽  
pp. 87-93 ◽  
Author(s):  
D. Kahina ◽  
C. Mouloud ◽  
D. Mokrane ◽  
M. Faiza ◽  
A. Rabia

This paper proposes a novel small asymmetric coplanar strip (ACS) fed tri-band monopole antenna for WLAN and WiMAX applications. To tune and create multiple resonant frequencies, the exciting strip of monopole antenna is connected to two different arms which are a J-shaped directed toward the asymmetric ground plane and an open stub. The proposed monopole antenna with a total size of 14.6 x17.5 mm2 is fabricated and tested. The measured results indicate that the antenna has impedance bandwidths for 10-dB return loss reach about 500 MHz (2.01-2.52 GHz), 230 MHz (3.48-3.71 GHz) and 1.2GHz (5.59-6.72 GHz) which cover widely the 2.4/5.8 GHz WLAN bands and the 3.5GHz WiMAX band. The simulated radiation patterns of the proposed antenna at the three resonant frequencies have a dipole-like radiation pattern in both E-and H-Planes. The compact size, the simple structure and good radiation performances of the proposed antenna makes it well-suited forthe intended applications.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Jaehyuk Lim ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
...  

A compact triple-band monopole antenna consisting of double rectangular rings and vertical slots cut into the ground is proposed for WLAN and WiMAX operations. The antenna has a compact size of 27.1 × 38.8 × 1.6 mm3, with simulated and measured impedance bandwidths of 2.37~2.81, 3.21~3.82, and 4.61~6.34 GHz with a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern and stable gain levels in the triple bands. The characteristics of the proposed antenna have been investigated using the numerical simulations and experiments.


2014 ◽  
Vol 8 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Sudeep Baudha ◽  
Dinesh Kumar Vishwakarma

This paper presents a simple broadband planar monopole microstrip patch antenna with curved slot and partial ground plane. The proposed antenna is designed and fabricated on commercially available FR4 material with εr = 4.3 and 0.025 loss tangent. Bandwidth enhancement has been achieved by introducing a curved slot in the patch and optimizing the gap between the patch and the partial ground plane and the gap between the curved slot and the edge of the patch. Simulated peak gain of the proposed antenna is 4.8 dB. The impedance bandwidth (defined by 10 dB return loss) of the proposed antenna is 109% (2–6.8 GHz), which shows bandwidth enhancement of 26% as compared with simple monopole antenna. The antenna is useful for 2.4/5.2/5.8-GHz WLAN bands, 2.5/3.5/5.5-GHz WiMAX bands, and other wireless communication services. Measured results show good agreement with the simulated results. The proposed antenna details are described and measured/simulated results are elaborated.


Sign in / Sign up

Export Citation Format

Share Document