Hexagonal Nested Loop Fractal Antenna for Quad Band Wireless Applications

Frequenz ◽  
2019 ◽  
Vol 73 (3-4) ◽  
pp. 99-108
Author(s):  
Robert Mark ◽  
Nipun Mishra ◽  
Kaushik Mandal ◽  
Partha Pratim Sarkar ◽  
Soma Das

Abstract A compact hexagonal nested loop fractal antenna with L shaped slot on the ground plane is presented for multiband applications. In this paper, the effect of fractal iterations and position of L-slot on ground plane are optimized for better performance of the antenna. Multiple hexagon loops excite multiple resonant modes at 1.7, 2.4, 3.1, 4.5 and 6 GHz and an L-shaped slot on the ground plane helps to achieve wide bandwidth response with better impedance matching in the 4.25–6.41 GHz frequency band. An equivalent circuit of the proposed antenna is modelled and the same is verified using ADS. Reflection coefficient and radiation pattern are presented to further confirm the performance of the proposed design for wireless applications. The proposed antenna is fabricated on a low-cost FR4 substrate of dimensions 40×32×1.6 mm3 and measured results show good agreement with simulation results.

2018 ◽  
Vol 7 (2) ◽  
pp. 68-75 ◽  
Author(s):  
P. N. Vummadisetty ◽  
A. Kumar

This research article presents, a compact 0.19 λ x 0.32 λ size ACS fed printed monopole wideband antenna loaded with multiple radiating branches suitable for LTE2300/WiBro, 5 GHz WLAN and WiMAX applications. The proposed triple band uniplanar antenna encompasses of C shaped strip, L shaped strip, rectangular shaped strip and a lateral ground plane. All the radiating strips and ground plane are etched on the 26 × 15 m size low cost FR4 epoxy substrate. This designed geometry evoked three independent reonances at 2.3 GHz, 3.5 GHz and 5.5 GHz with precise impedance matching over each operating band. The reflection coefficient ( ) response of the presented antenna demonstrates three distinct resonant modes associated with -10 dB bandwidths are about 2.24-2.40 GHz, 3.38-3.83 GHz and 5.0-6.25 GHz respectively. From the study, it is also observed that the proposed design works perfect with microstrip as well as CPW feedings. Hence the designed Multi Feed Multi Band (MFMB) antenna can be easily deployed in to any portable wireless device that works for 2.3/3.5/ 5 GHz frequency bands.


2016 ◽  
Vol 9 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Yogesh Kumar Choukiker ◽  
Jagadish Chandra Mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.


2016 ◽  
Vol 26 (04) ◽  
pp. 1750068 ◽  
Author(s):  
Jaspal Singh Khinda ◽  
Malay Ranjan Tripathy ◽  
Deepak Gambhir

A low-cost multi-edged rectangular microstrip fractal antenna (RMFA) yielding a huge bandwidth of 8.62[Formula: see text]GHz has been proposed in this paper. The proposed fractal antenna design constitutes a radiation patch, fed with 50[Formula: see text][Formula: see text] microstrip line and a partial ground plane. The partial ground plane is the combination of shapes of rectangle and three-point arc. The proposed antenna is simulated as well as fabricated. The simulated results using electromagnetic solver software and measured with vector network analyzer bench MS46322A are presented and compared. The various parameters such as return loss, voltage standing wave ratio (VSWR), antenna impedance, gain, directivity, group delay and phase of [Formula: see text], radiation efficiency and patterns are presented here. The depth of return loss is improved for a wide range of frequencies. The proposed fractal antenna is further extended to linear array to improve the gain and impedance bandwidth. The simulated and measured results prove the superiority of the proposed antenna.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 211 ◽  
Author(s):  
Srinivasarao Alluri ◽  
Nakkeeran Rangaswamy

This article presents a super wideband (SWB) circular-shaped fourth iterative fractal antenna loaded with concentric hexagonal slots. A tapered microstrip feed and a partial ground plane is used. It has a total size of 40 × 27 × 1.6 mm3. Numerical results of the antenna show that it provides a bandwidth from 1.43 GHz to more than 40 GHz (percentage bandwidth greater than 186%) with a bandwidth ratio of approximately greater than 28:1 for S11 < -10 dB. A prototype of the proposed antenna has been fabricated and its performances are measured up to 15 GHz. A good agreement is achieved between the numerical and experimental reflection coefficient, VSWR and input impedance. Measured radiation patterns at different frequencies and simulated peak gain are presented and discussed. It has the advantages of super wide bandwidth and compact size. The developed antenna is suitable for various wireless communications such as GPS, GSM, UMTS, ISM and UWB.  


Author(s):  
Janabeg Loni ◽  
Anand Kumar Tripathi ◽  
Vinod Kumar Singh

In this chapter, a low cost compact flexible textile antenna is presented that has low cost due to partial ground plane, and the anticipated antenna is suitable for different wireless applications. The proposed antenna is utilized as a line feed and simulated from 2GHz to 8GHz frequency. The impedance bandwidth of proposed antenna is 106.30% at -10 dB reflection coefficient. The anticipated design simulated with CST software to achieve directivity at resonant frequency 3.2 GHz is 3.609dBi and at 4.8 GHz is 4.519 dBi.


Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


2015 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Siti Zarina Mohd Muji ◽  
Yue Ma ◽  
Raed A. Abd-Alhameed

This paper presented a planar printed multiple-input-multiple-output (MIMO) antenna with a dimension of 100 x 45 mm2. It composed of two crescent shaped radiators placed symmetrically with respect to the ground plane. Neutralization line applied to suppress mutual coupling. The proposed antenna examined both theoretically and experimentally, which achieves an impedance bandwidth of 18.67% (over 2.04-2.46 GHz) with a reflection coefficient < -10 dB and mutual coupling minimization of < -20 dB. An evaluation of MIMO antennas is presented, with analysis of correlation coefficient, total active reflection coefficient (TARC), capacity loss and channel capacity. These characteristics indicate that the proposed antenna suitable for some wireless applications.


Author(s):  
Shweta Rani ◽  
Sushil Kakkar

This paper focuses on the design and development of modified Koch fractal antenna. Compared to traditional Koch curve antenna, the presented antenna possesses a greater number of frequency bands and better impedance matching. Furthermore, the bacterial foraging optimization (BFO) approach is implemented to enhance the impedance bandwidth. The developed technique has been verified by employing various numerical simulations. The design parameters generated from the optimization procedure have been utilized to manufacture the antenna and the respective experimental and simulated results compared. The measured results show that the designed antenna exhibits multi and wideband behavior, covering WLAN, WIMAX, and various other wireless applications.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Author(s):  
U. Illahi ◽  
J. Iqbal ◽  
M. I. Sulaiman ◽  
M Alam ◽  
M. S. Mazliham ◽  
...  

<p class="Abstract">A rectangular dielectric resonator antenna (DRA) has been excited by an off-set single conformal metal strip. By using such excitation technique two degenerate resonant modes, TExδ11 and TEy1δ1 of the rectangular DRA have been excited to achieve circular polarization (CP). A CP bandwidth of ~ 5.2% in conjunction with a wide impedance matching bandwidth of ~ 54% has been provided by the proposed DRA configuration. The antenna design has been simulated using computer simulation technology (CST). Antenna prototype has been built to verify the impedance matching bandwidth. Far field parameters have been optimized and verified using two simulation techniques in CST i.e. finite integration technique (FIT) and finite element method (FEM). A good agreement between the simulated and measured result has been observed for S11. Similarly a very good resemblance between the far field results from FIT and FEM have been demonstrated.</p>


Sign in / Sign up

Export Citation Format

Share Document