scholarly journals FoRex Trading Using Supervised Machine Learning

2018 ◽  
Vol 7 (4.15) ◽  
pp. 400 ◽  
Author(s):  
Thuy Nguyen Thi Thu ◽  
Vuong Dang Xuan

The exchange rate of each money pair can be predicted by using machine learning algorithm during classification process. With the help of supervised machine learning model, the predicted uptrend or downtrend of FoRex rate might help traders to have right decision on FoRex transactions. The installation of machine learning algorithms in the FoRex trading online market can automatically make the transactions of buying/selling. All the transactions in the experiment are performed by using scripts added-on in transaction application. The capital, profits results of use support vector machine (SVM) models are higher than the normal one (without use of SVM). 

Author(s):  
Shahadat Uddin ◽  
Arif Khan ◽  
Md Ekramul Hossain ◽  
Mohammad Ali Moni

Abstract Background Supervised machine learning algorithms have been a dominant method in the data mining field. Disease prediction using health data has recently shown a potential application area for these methods. This study aims to identify the key trends among different types of supervised machine learning algorithms, and their performance and usage for disease risk prediction. Methods In this study, extensive research efforts were made to identify those studies that applied more than one supervised machine learning algorithm on single disease prediction. Two databases (i.e., Scopus and PubMed) were searched for different types of search items. Thus, we selected 48 articles in total for the comparison among variants supervised machine learning algorithms for disease prediction. Results We found that the Support Vector Machine (SVM) algorithm is applied most frequently (in 29 studies) followed by the Naïve Bayes algorithm (in 23 studies). However, the Random Forest (RF) algorithm showed superior accuracy comparatively. Of the 17 studies where it was applied, RF showed the highest accuracy in 9 of them, i.e., 53%. This was followed by SVM which topped in 41% of the studies it was considered. Conclusion This study provides a wide overview of the relative performance of different variants of supervised machine learning algorithms for disease prediction. This important information of relative performance can be used to aid researchers in the selection of an appropriate supervised machine learning algorithm for their studies.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Aurelle Tchagna Kouanou ◽  
Thomas Mih Attia ◽  
Cyrille Feudjio ◽  
Anges Fleurio Djeumo ◽  
Adèle Ngo Mouelas ◽  
...  

Background and Objective. To mitigate the spread of the virus responsible for COVID-19, known as SARS-CoV-2, there is an urgent need for massive population testing. Due to the constant shortage of PCR (polymerase chain reaction) test reagents, which are the tests for COVID-19 by excellence, several medical centers have opted for immunological tests to look for the presence of antibodies produced against this virus. However, these tests have a high rate of false positives (positive but actually negative test results) and false negatives (negative but actually positive test results) and are therefore not always reliable. In this paper, we proposed a solution based on Data Analysis and Machine Learning to detect COVID-19 infections. Methods. Our analysis and machine learning algorithm is based on most cited two clinical datasets from the literature: one from San Raffaele Hospital Milan Italia and the other from Hospital Israelita Albert Einstein São Paulo Brasilia. The datasets were processed to select the best features that most influence the target, and it turned out that almost all of them are blood parameters. EDA (Exploratory Data Analysis) methods were applied to the datasets, and a comparative study of supervised machine learning models was done, after which the support vector machine (SVM) was selected as the one with the best performance. Results. SVM being the best performant is used as our proposed supervised machine learning algorithm. An accuracy of 99.29%, sensitivity of 92.79%, and specificity of 100% were obtained with the dataset from Kaggle (https://www.kaggle.com/einsteindata4u/covid19) after applying optimization to SVM. The same procedure and work were performed with the dataset taken from San Raffaele Hospital (https://zenodo.org/record/3886927#.YIluB5AzbMV). Once more, the SVM presented the best performance among other machine learning algorithms, and 92.86%, 93.55%, and 90.91% for accuracy, sensitivity, and specificity, respectively, were obtained. Conclusion. The obtained results, when compared with others from the literature based on these same datasets, are superior, leading us to conclude that our proposed solution is reliable for the COVID-19 diagnosis.


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2021 ◽  
Author(s):  
Omar Alfarisi ◽  
Zeyar Aung ◽  
Mohamed Sassi

For defining the optimal machine learning algorithm, the decision was not easy for which we shall choose. To help future researchers, we describe in this paper the optimal among the best of the algorithms. We built a synthetic data set and performed the supervised machine learning runs for five different algorithms. For heterogeneity, we identified Random Forest, among others, to be the best algorithm.


2020 ◽  
pp. 45-49
Author(s):  
Gajendra Sharma ◽  

Fault tolerance is an important issue in the field of cloud computing which is concerned with the techniques or mechanism needed to enable a system to tolerate the faults that may encounter during its functioning. Fault tolerance policy can be categorized into three categories viz. proactive, reactive and adaptive. Providing a systematic solution the loss can be minimized and guarantee the availability and reliability of the critical services. The purpose and scope of this study is to recommend Support Vector Machine, a supervised machine learning algorithm to proactively monitor the fault so as to increase the availability and reliability by combining the strength of machine learning algorithm with cloud computing.


2013 ◽  
Vol 10 (2) ◽  
pp. 1376-1383
Author(s):  
Dr.Vijay Pal Dhaka ◽  
Swati Agrawal

Maintainability is an important quality attribute and a difficult concept as it involves a number of measurements. Quality estimation means estimating maintainability of software. Maintainability is a set of attribute that bear on the effort needed to make specified modification. The main goal of this paper is to propose use of few machine learning algorithms with an objective to predict software maintainability and evaluate them. The propose models are Gaussian process regression networks (GPRN), probably approximately correct learning (PAC), Genetic algorithm (GA). This paper predicts the maintenance effort. The QUES (Quality evaluation system) dataset are used in this study. The QUES datasets contains 71 classes. To measure the maintainability, number of “CHANGE” is observed over a period of few years. We can define CHANGE as the number of lines of code which were added, deleted or modified during few year maintenance periods. After this study these machine learning algorithm was compared with few models such as GRNN (General regression neural network) model, RT (Regression tree), MARS (Multiple adaptive regression splines), SVM (Support vector machine), MLR (Multiple linear regression) models. Based on experiments, it was found that GPRN can be predicting the maintainability more accurately and precisely than prevailing models. We also include object oriented software metric to measure the software maintainability. The use of machine learning algorithms to establish the relationship between metrics and maintainability would be much better approach as these are based on quantity as well as quality. 


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 201
Author(s):  
Charlyn Nayve Villavicencio ◽  
Julio Jerison Escudero Macrohon ◽  
Xavier Alphonse Inbaraj ◽  
Jyh-Horng Jeng ◽  
Jer-Guang Hsieh

Early diagnosis is crucial to prevent the development of a disease that may cause danger to human lives. COVID-19, which is a contagious disease that has mutated into several variants, has become a global pandemic that demands to be diagnosed as soon as possible. With the use of technology, available information concerning COVID-19 increases each day, and extracting useful information from massive data can be done through data mining. In this study, authors utilized several supervised machine learning algorithms in building a model to analyze and predict the presence of COVID-19 using the COVID-19 Symptoms and Presence dataset from Kaggle. J48 Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors and Naïve Bayes algorithms were applied through WEKA machine learning software. Each model’s performance was evaluated using 10-fold cross validation and compared according to major accuracy measures, correctly or incorrectly classified instances, kappa, mean absolute error, and time taken to build the model. The results show that Support Vector Machine using Pearson VII universal kernel outweighs other algorithms by attaining 98.81% accuracy and a mean absolute error of 0.012.


2012 ◽  
Vol 9 (73) ◽  
pp. 1934-1942 ◽  
Author(s):  
Philip J. Hepworth ◽  
Alexey V. Nefedov ◽  
Ilya B. Muchnik ◽  
Kenton L. Morgan

Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.


Sign in / Sign up

Export Citation Format

Share Document