scholarly journals Multi-dimensional trust aware routing for clustered IOT framework

2018 ◽  
Vol 7 (4.20) ◽  
pp. 15
Author(s):  
Ashwala Mohan ◽  
Dr. Bhanu Bhaskara

With the increased interest in the utilization of smart applications, the IoT has gained a lot of popularity in the real world scenario. Due to the integration of different heterogeneous devices in a single network, various types of security issues will arise in the IoT. To ensure more security in IoT, this paper proposes a new trust aware routing framework based on the inherent communication and data properties of devices connected in the network. A new trust metric is derived in this paper by combining two different trusts based on the communication between nodes and the information passing through them. Further to achieve a prolonged network lifetime with optimal resource conservation, a clustering based communication strategy is accomplished. Extensive simulations are carried out by varying the malicious nature of network and the performance is measured through the metrics, packet loss ratio, packet delivery ratio, delay, network lifetime and average energy consumption. 

Author(s):  
Kirti A. Adoni ◽  
Anil S. Tavildar ◽  
Krishna K. Warhade

Background: The performance of Mobile Ad-hoc Networks get severely degraded due to various attacks including Selfish Behaviour attack. The detection of malicious nodes and avoidance of such nodes for data forwarding is important to enhance the MANET’s performance. Methods: A probabilistic model based on Single Sided Laplacian distribution for the random ON/OFF switching time of this attack is proposed. The model is used to make appropriate decisions regarding assignment of trust levels to suspicious nodes. The proposed protocol, based on this trust along with Confidence values of nodes, referred to as OLSRT-C protocol is used to select the optimum path for data forwarding. Simulations are carried out using Network Simulator NS2.35. Results: The random behavior of Selfish Behaviour attack is analyzed by considering all the possible random parameters. The random deployment of mobile nodes, number of malicious nodes, number of times the malicious nodes switch and timing instances at which these nodes change their states are considered. From the results, it is observed that, the OLSRTC protocol gives stable performance for Packet Delivery Ratio and Routing Overheads whereas for OLSR protocol, Packet Delivery Ratio gradually reduces and Routing Overheads increase, for percentage of malicious nodes increase from 10% to 50%. For OLSRT-C protocol, Average Energy Consumption per node increases marginally compared to OLSR protocol. Conclusion: The proposed OLSRT-C protocol successfully mitigates randomized Selfish Behaviour attack with marginal increase in the Average Energy Consumption per node. The Protocol Efficacy for OLSRT-C protocol is much higher compared to OLSR protocol.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Umesh K. Raut ◽  
L.K. Vishwamitra

Purpose Software-define vehicular networks (SDVN) assure the direct programmability for controlling the vehicles with improved accuracy and flexibility. In this research, the resource allocation strategy is focused on which the seek-and-destroy algorithm is implemented in the controller in such a way that an effective allocation of the resources is done based on the multi-objective function. Design/methodology/approach The purpose of this study is focuses on the resource allocation algorithm for the SDVN with the security analysis to analyse the effect of the attacks in the network. The genuine nodes in the network are granted access to the communication in the network, for which the factors such as trust, throughput, delay and packet delivery ratio are used and the algorithm used is Seek-and-Destroy optimization. Moreover, the optimal resource allocation is done using the same optimization in such a way that the network lifetime is extended. Findings The security analysis is undergoing in the research using the simulation of the attackers such as selective forwarding attacks, replay attacks, Sybil attacks and wormhole attacks that reveal that the replay attacks and the Sybil attacks are dangerous attacks and in future, there is a requirement for the security model, which ensures the protection against these attacks such that the network lifetime is extended for a prolonged communication. The achievement of the proposed method in the absence of the attacks is 84.8513% for the remaining nodal energy, 95.0535% for packet delivery ratio (PDR), 279.258 ms for transmission delay and 28.9572 kbps for throughput. Originality/value The seek-and-destroy algorithm is one of the swarm intelligence-based optimization designed based on the characteristics of the scroungers and defenders, which is completely novel in the area of optimizations. The diversification and intensification of the algorithm are perfectly balanced, leading to good convergence rates.


Author(s):  
Kirti A. Adoni ◽  
Anil S. Tavildar ◽  
Krishna K. Warhade

Background and Objective: Random Black Hole (BH) attack significantly degrades MANET’s performance. For strategic applications, the performance parameters like Packet Delivery Ratio, Routing Overheads, etc. are important. The objectives are: (a) To model random BH attack, (b) To propose a routing strategy for the protocol to mitigate random BH attack, (c) To evaluate and compare the network performance of modified protocol with the standard protocol. Methods: The random BH attack is modelled probabilistically. The analysis is carried out by varying Black Hole Attack (BHA) time as Early, Median, Late occurrences and mix of these three categories. The blocking performance is also analysed by varying the percentages of malicious presence in the network. Normal Optimized Link State Routing (OLSR) protocol is used to simulate the MANET performance using a typical medium size network. The protocol has then been modified using Trust- Confidence aware routing strategy, named as TCAOLSR, with a view to combat the degradations due to the random BH attack. Results: The random behavior of Black Hole attack is analyzed with all the possible random parameters, like deployment of mobile nodes, number of malicious nodes and timing instances at which these nodes change their state. From the results of individual type- Early, Median and Late, it is observed that the TCAOLSR protocol gives stable performance for Packet Delivery Ratio (PDR) and Routing Overheads (RO), whereas for OLSR protocol PDR gradually reduces and RO increases. For individual and mix type, Average Energy Consumption (AEC) per node increases marginally for TCAOLSR protocol. For the mix type, PDR for TCAOLSR is 40-60% better whereas RO for TCAOLSR is very less compared to OLSR protocol. The efficacy of the TCAOLSR protocol remains stable for different categories of BH attack with various percentages of malicious nodes compared to OLSR with the same environment. Conclusion: Simulations reveal that the modified protocol TCAOLSR, effectively mitigates the network degradation for Packet Delivery Ratio and Routing Overheads considerably, at the cost of a slight increase in Average Energy Consumption per node of the network. Efficacy of the OLSR and TCAOLSR protocols has also been defined and compared to prove robustness of the TCAOLSR protocol.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 82
Author(s):  
Santosh Anand ◽  
Pillai Atulya Radhakrishna

In current technology Adhoc network is most commonly used in communication network. Major parts of the Adhoc network devices are based on the sensor nodes. Sensor devices operated on the battery so energy is vital constraint. Effective Utilization of the energy of the sensor nodes and sensor networks to the full extent is highly impracticable. Optimization of the network root and the load balancing in coverage helps to maximize the lifetime of the sensor network considerably. The research carry out on sensor network, deployment model is proposed which essentially finds the optimized roots with the help of  neighbour discovery algorithm which find the neighbour and non neighbour nodes and analysis the load of the network based on Packet Retrieval in RREQ, throughput, average energy consumption, packet delivery ratio and packet drop. 


2019 ◽  
Vol 8 (3) ◽  
pp. 6013-6018

MANETs are a trending topic in the wireless communication network. MANETs are formed automatically by an autonomous system of mobile nodes that are connected via wireless links. Cluster-head gateway switch routing protocol (CGSR) is a proactive protocol which is also called table-driven protocol. It consists of routing table information before setting up a connection. Ad-hoc on-demand distance vector protocol (AODV) is a reactive protocol, it sets path only when demanded by the network. CGSR protocol forms a group of nodes into clusters and selects a node as cluster-head based on some clustering algorithms for each cluster. In this paper, we have proposed a protocol, which combines the advantages of both CGSR and AODV to minimize traffic congestion in an ad-hoc wireless network. The performance metrics such as routing overhead, end-end delay, packet delivery ratio, throughput, and average energy consumption are enhanced and compared with other clustering protocols such as CGSR and LEACH protocols. The comparison result reveals that the routing overhead, end-end delay, and the average energy consumption is reduced and packet delivery ratio, throughput is improved.


2019 ◽  
Vol 8 (2) ◽  
pp. 4187-4194

Usually, the nodes in Mobile Adhoc Networks (MANET) are bounded with the limited power resources to interact with each other nodes without any backbone infrastructures. As a result, an allocation of unbalanced traffic among nodes may increase the power dissipation in the overloaded nodes and path failures that degrade the network lifetime. To tackle this problem, an on-demand Power and LoadAware (PLA) multipath node-disjoint source routing scheme was proposed based on the Dynamic Source Routing (DSR) protocol that uses a new cost function to determine the multiple nodedisjoint power and select the load-aware optimal paths to their destinations. However, this protocol was affected by control overhead and the reliable packet delivery was also not effective. Hence in this article, Power and Load-aware i.e., Utility-Aware Reliable Opportunistic Routing (UAROR) protocol is proposed to enhance the efficiency and reliability of the routing protocol. In this protocol, topology control and link lifetime prediction algorithms are integrated into the PLA algorithm to predict the effect of the node mobility on routing performance. The link prediction algorithm considers both mobility speed and direction for improving the accuracy. As well, an opportunistic topology control algorithm uses packet delivery ratio to maintain the node’s stability. Moreover, Utility-Aware Enhanced ROR (UAEROR) protocol is proposed to improve the node’s stability and reduce the control overhead by employing the neighbor detection algorithm that uses degree and reachability of nodes. Finally, the simulation results show that the effectiveness of the proposed protocol compared to the existing protocol in terms of throughput, end-to-end delay, packet delivery ratio, network lifetime, energy consumption and control overhead


Author(s):  
Baranidharan V. ◽  
Sivaradje G. ◽  
Kiruthiga Varadharajan ◽  
Vignesh S.

The most adverse characteristics of underwater wireless sensor network (UWSN) communications are high propagation delay, high error rate, very low bandwidth, and limited available energy. The energy resources replacement is also more expensive. The proposed clustering-based geographic- opportunistic routing with adjustment of depth-based topology control for communication recovery of void regions (C- GEDAR). The cluster-based GEDAR routes the packet to the surface of sonobuoys with the help of clusters. The void sensor node recovery algorithm is used to recover the void nodes to calculate their new depth. The proposed routing protocol is to be simulated and its performances are evaluated by using an Aquasim simulator. The simulated result shows that C-GEDAR performs better average energy consumption, good packet delivery ratio (PDR) and less end-to-end delay.


Author(s):  
Zahrah A. Almusaylim ◽  
Abdulaziz Alhumam ◽  
Wathiq Mansoor ◽  
Pushpita Chatterjee ◽  
Noor Zaman Jhanjhi

The rapid growth of the smart Internet of Things (IoT) and massive propagation of wireless technologies revealed the recent opportunities for development in various domains of real life such as smart cities and E-Health applications. A slight defense against different forms of attacks is offered for the current secure and lightweight Routing Protocol for Low Power and Lossy Networks (RPL) of IoT resource-constrained devices. Data packets are highly likely to be exposed while transmitting them during data packets routing. The RPL rank and version number attacks, which are two forms of RPL attacks, can have critical consequences for RPL networks. The studies conducted on these attacks have several security defects and performance shortcomings. The research proposes a Secure RPL Routing Protocol (SRPL-RP) for rank and version number attacks. It mainly detects, mitigates and isolates attacks in the RPL networks. The detection is based on a comparison of ranks strategy. The mitigation uses threshold and attacks status tables, and the isolation adds them to a blacklist table and alerts relevant nodes to skip them. SRPL-RP supports diverse types of network topologies and is comprehensively analyzed with multiple studies such as Standard RPL with Attacks, SBIDS and RPL+ Shield. The analysis results showed that the SRPL-RP achieves great improvements with Packet Delivery Ratio (PDR) of 98.48%, control message value of 991 packets/second, and average energy consumption of 1231.75 joules. It provides a better accuracy rate with 98.17% under the attacks.


2020 ◽  
Vol 6 ◽  
pp. e326
Author(s):  
Por Lip Yee ◽  
Shahid Mehmood ◽  
Ahmad Almogren ◽  
Ihsan Ali ◽  
Mohammad Hossein Anisi

Opportunistic routing is an emerging routing technology that was proposed to overcome the drawback of unreliable transmission, especially in Wireless Sensor Networks (WSNs). Over the years, many forwarder methods were proposed to improve the performance in opportunistic routing. However, based on existing works, the findings have shown that there is still room for improvement in this domain, especially in the aspects of latency, network lifetime, and packet delivery ratio. In this work, a new relay node selection method was proposed. The proposed method used the minimum or maximum range and optimum energy level to select the best relay node to forward packets to improve the performance in opportunistic routing. OMNeT++ and MiXiM framework were used to simulate and evaluate the proposed method. The simulation settings were adopted based on the benchmark scheme. The evaluation results showed that our proposed method outperforms in the aspect of latency, network lifetime, and packet delivery ratio as compared to the benchmark scheme.


Author(s):  
M Prasad ◽  
◽  
D Reddy ◽  

In Internet of Things (IoT), secure communication is a prime concern since the open internet source and vast heterogeneity offers several challenges to the network. To achieve an enhanced security, an effective trust evaluation model is required through which the abnormal nodes can be detected and isolated. Towards this objective we have proposed a Light Weight Trust Sensing (LWTS) mechanism for IoT routing. Several factors like Packet Forwarding Factor, Packet Consistency Factor and Packet Repetition Factor are employed to analyze the behaviour of IoT nodes. Along with these factors, the proposed model also checks for energy efficiency to achieve an improved network lifetime. Trust Calculation process is accomplished in two phases; they are direct and indirect fashion. Finally based on obtained total trust, each neighbour node are categorized as No Trust, Average Trust, Fair Trust and Good Trust and the node with good trust is selected as next-hop forwarding node. For the proposed approach extensive simulations are carried out and the performance is measured through Packet Delivery Ratio, Malicious Detection Rate and Average Energy Consumption. The obtained results prove the effectiveness when compared to existing approaches.


Sign in / Sign up

Export Citation Format

Share Document