scholarly journals Strength and Ductility of Bubbled Wide Reinforced Concrete Beams with Diverse Types of Shear Steel Plates

2018 ◽  
Vol 7 (4.20) ◽  
pp. 502 ◽  
Author(s):  
Amer Mohamed Ibrahim ◽  
Ahmed Abdullah Mansor ◽  
Wissam D. Salman ◽  
Mohammed Jaafar Hamood

This paper presents an experimental investigation on the strength of bubbled wide reinforced concrete beams with different types of shear steel plates. Eight specimens with dimensions of 215x560x1800mm were investigated. The studied variables deal with replacement of 10mm stirrups diameter stirrups spaced at 125mm by shear steel plates having equivalent cross-sectional area for stirrups at mid legs height with circular opening of different thicknesses (3, 4 and 5mm). Four specimens were without any bubbles and the others with bubbles. This study showed that the shear steel plates is a good alternative for replacing the stirrups and gives increasing in yield, ultimate load and deflection (at service load) with 5% , 15% and 9% on the average when using the bubbles. Without using bubbles, the aspect ratio of shear steel plates bounded between the boundaries 4.5 to 8 gave increased the ductility by 36%. Using the bubbles in specimens was decreased 4.7% from the total weight of specimens. ACI 318-14(1) and EC 2(2) codes give a predicted deflection more than that obtained from experimental results by 16% on the average and by 24% when using bubbles.    

Author(s):  
Eswari Natarajan

Abstract: The effect of fibre content on the Strength and ductility behaviour of hybrid fibre reinforced concrete (HFRC) beams having different fibre volume fractions was investigated. The parameters of this investigation included service load, ultimate load, service load deflection, ultimate load deflection, crack width, deflection ductility and energy ductility. The fibre volume fraction (Vf) ranged from 0.0 to 2.0 percent. Steel and polyolefin fibres were combined in different proportions and their impact on the above parameters was studied. The ductile response of hybrid fibre reinforced concrete beams was compared with that of control beam. The test results show that addition of 2.0 percent by volume of hybrid fibres improve the strength and ductility appreciably. Empirical expressions for predicting the strength and ductility of hybrid fibre reinforced concrete (HFRC) are proposed based on regression analysis. A close agreement has been obtained between the predicted and experimental results.


2019 ◽  
Vol 3 (2) ◽  
pp. 135
Author(s):  
Novita Ike Triyuliani ◽  
Sri Murni Dewi ◽  
Lilya Susanti

The innovations strengthening building structures are important topics. Failure in structures such as beams and columns due to time, re-functions of a building, even initial design errors that are weak or lack the safety factor of a building structure. External reinforced concrete beams are one of the beams currently being developed. It is a concrete block with reinforcement of steel reinforcement on the outer (external) of the beam. This study aims to determine the index of increasing beam strength and ductility after retrofitting external steel reinforcement, which has the dimension of beams 15 x 15 x 100 cm, repeating 12 pcs, with external reinforcement each 6 pcs 2Ø6 and 3Ø6. The results from this study are an increasing the index of beam flexural strength after retrofit with external steel reinforcement. Meanwhile, beams after retrofit with 2Ø6 external steel have an average increase index of 1.25 and 1.21 while for external steel 3Ø6 are 1.29 and 1.60 respectively. The ductility depends on the value of ultimate load and maximum deflection that occurs, where the ductility value for the comparison of each specimen experiences a reduction in the average ductility value with 2Ø6 external steel which is 37.74% and 70.95% while with 3Ø6 external steel is 61,65% and 60.62%. Berbagai inovasi upaya peningkatan kekuatan struktur bangunan telah menjadi bahasan yang penting. Kegagalan pada struktur seperti balok dan kolom karena umur, alih fungsi suatu bangunan, bahkan kesalahan desain awal yang lemah atau kurang memenuhi faktor keamanan suatu struktur bangunan. Balok beton bertulangan eksternal adalah salah satu balok yang sedang dikembangkan pada saat ini, yaitu balok beton dengan perkuatan tulangan baja di sisi terluar (eksternal). Penelitian ini bertujuan untuk mengetahui indeks peningkatan kekuatan balok dan daktilitas setelah dilakukan perbaikan menggunakan tulangan baja eksternal, dengan dimensi balok 15 × 15 × 100 cm berulang 12 buah, penambahan tulangan baja eksternal masingmasing 6 buah 2Ø6 dan 3Ø6. Hasil yang didapat dari penelitian ini adalah indeks peningkatan kekuatan lentur balok setelah dilakukan perbaikan menggunakan tulangan baja eksternal. Dimana balok setelah dilakukan perbaikan dengan baja eksternal 2Ø6 memiliki indeks peningkatan rata-rata 1,25 dan 1,21 sedangkan untuk baja eksternal 3Ø6 masing-masing 1,29 dan 1,60. Daktilitas tergantung dari nilai beban ultimit dan lendutan maksimum yang terjadi, dimana nilai daktilitas untuk perbandingan tiap benda uji mengalami reduksi nilai daktilitas rata-rata dengan baja eksternal 2Ø6 yaitu sebesar 37,74% dan 70,95% sedangkan dengan baja eksternal 3Ø6 sebesar 61,65% dan 60,62%.


2021 ◽  
Vol 318 ◽  
pp. 03016
Author(s):  
Khalid I. Qaddoory ◽  
Ahmed A. Mansor ◽  
Ahlam S. Mohammed ◽  
Bilal J. Noman

In the past few years, new techniques have emerged using steel plates instead of traditional reinforcement in the reinforced concrete beams. This study deals with using a new method for reinforced concrete beams using steel plates instead of traditional steel bars with different thicknesses of (4, 5, and 6 mm) placed vertically inside the lower part of the beam. Four reinforced concrete beams were cast and tested under a two-point load. All beams had the same cross-sectional area of reinforcement and dimensions of 2100 mm in length, 350 mm in height, and 250 in width. The results showed that as the thickness of the steel plate increases, the samples would have greater resistance until more deflection is produced. In addition, there is a reduction in the crack load, ultimate load, and yield load when replacing reinforcing bars with steel plates. In which, a reduction in crack load by about 11.1, 15.5, and 22.2% plate thicknesses of 4,5,6 mm respectively, compared to reference beam that had a deformed steel bar (Dia. 16 mm). In addition, a reduction in yielding load was observed about 42, 53, and 60% for steel plate thickness of 4, 5, and 6 mm respectively, compared to the reference model. Finally, the cracks for all the steel plate specimens compared to reference specimens were wider and smaller.


2018 ◽  
Vol 11 (2) ◽  
pp. 1-13
Author(s):  
Ahmed A. Mansor ◽  
Amer M. Ibrahim ◽  
Mohammed J. Hamood

This paper presents an experimental investigation on the behavior of bubbled wide reinforced concrete beams with different shear steel plate spacing. Four specimens with the dimensions of 215x560x1800mm are investigated. The variables studied in this work is using the 10mm stirrups with 125mm spacing and 3mm thickness steel plate with spacing 125, 166 and 250mm instead of reinforcing stirrups. Shear steel plates is good alternative for replacing the stirrups and gives increasing in yield and ultimate loads with 17% and 18% respectively and decreasing the deflection by 8% at yield and 12% at ultimate. Moreover decrease the strain in longitudinal reinforcement by 8% at yield and 24% at ultimate, and reduced the total weight by 2.7%. By increasing the spacing of shear steel plate by 33% and 100%, the results showed that the yield load reduced to 3% and 4% respectively, but the deflection was increased with 37% and 20% (at yield). The strain in interior legs is more than the strain in exterior legs by 189%, 142% and 52% at yield for spacing 125, 166 and 250mm respectively. ACI 318-14 [1] and EC 2 [2] codes give a predicted deflection more than the experimental deflection by 26% and 30% on average respectively


2013 ◽  
Vol 59 (3) ◽  
pp. 275-293
Author(s):  
Alaa A. Bashandy

Abstract This study aims to evaluate the efficiency of strengthening reinforced concrete beams using some valid strengthening materials and techniques. Using concrete layer, reinforced concrete layer and steel plates are investigated in this research. Experiments on strengthening beam samples of dimensions 100x150x1100mm are performed. Samples are divided in to three groups. Group “A” is strengthened using 2cm thickness concrete layer only (two types). Group “B” is strengthened using 2cm thickness concrete layer reinforced with meshes (steel and plastic). Group “C” is strengthened using steel plates. The initial cracking load, ultimate load and crack pattern of tested beams are illustrated. The experimental results show that for group A and B, the ultimate strength, stiffness, ductility, and failure mode of RC beams, with the same thickness strengthening layer applied, will be affected by the mesh type, type of concrete layer. While for group C, these parameters affected by the fixation technique and adhesion type.


2021 ◽  
Vol 14 (3) ◽  
pp. 141-151
Author(s):  
Khalid Ibrahim ◽  
Ahmed A. Mansor ◽  
Bilal J. Noman ◽  
Wisam D. Salman ◽  
Ahlam S. Mohammed

In recent years, new methods have developed utilizing steel plates instead of deformed steel bar reinforcement in the concrete beams. This paper presents the utilization of a new proposed approach for replacing the main flexural reinforcement concrete beams by steel checker plates of (6mm) thickness. Four reinforced concrete beams were cast and tested under two-point load. All beams had the same cross-sectional area of reinforcement and the dimensions of 210 cm in length, 35 cm in height and 25cm in width. The result show there was a reduction in crack load, yield load, and ultimate load of steel plate as compared to steel bar, Whereas increased with increasing cross-sectional area of the steel. Once, the increment in crack load and yield load of steel plate were 25.5% and 16,67% more than steel bar whereas the same increment was found in ultimate load for both steel bar and steel plate. The measured crack load and ductility for steel plate was 16.7% more than steel bar when increasing cross-sectional area of steel. The deflection past of failure for steel plate has a considerable deflection before failure than steel bar. Finally, the observations show cracks have been much wider and less in range for all steel plate samples in comparison with the steel bar.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


2020 ◽  
Vol 857 ◽  
pp. 162-168
Author(s):  
Haidar Abdul Wahid Khalaf ◽  
Amer Farouk Izzet

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and 400 mm, respectively were fabricated and tested as simply supported beams under one incremental concentrated load at mid-span until failure. The design parameters were the configuration and size of openings. Three main groups categorized experimental beams comprise the same area of openings and steel reinforcement details but differ in configurations. Three different shapes of openings were considered, mainly, rectangular, parallelogram, and circular. The experimental results indicate that, the beams with circular openings more efficient than the other configurations in ultimate load capacity and beams stiffness whereas, the beams with parallelogram openings were better than the beams with rectangular openings. Commonly, it was observed that the reduction in ultimate load capacity, for beams of group I, II, and III compared to the reference solid beam ranged between (75 to 93%), (65 to 93%), and (70 to 79%) respectively.


Sign in / Sign up

Export Citation Format

Share Document