scholarly journals Mechanical Properties of the Concrete Containing Porcelain Waste as Sand

2018 ◽  
Vol 7 (4.30) ◽  
pp. 180 ◽  
Author(s):  
Mohammed Jamal ◽  
Mohammad Zaky Noh ◽  
Shihab Al- Juboor ◽  
Mohd Haziman Bin Wan ◽  
Zakiyyu Ibrahim Takai

The demand of concrete have been increases on a daily bases which consume a lot of natural resource such as sand and gravel,  there is an immediate need for finding suitable alternative which can be used to replace sand partially with another materials with high proportion . Ceramic waste is one of the strongest research areas that include the activity of replacement in all the sides of construction materials. This research aims to improve the performance of concrete using ceramic waste, and demonstrate the performance of mechanical properties to the concrete with partial replacement of sand by using waste porcelain. For these, we analyzed the mechanical properties of the concrete such as compressive strength, split tensile and flexural strength, the specimen were measured based on 10% ,20% ,30% ,40%, and 50% weight ratio of replace sand with waste porcelain at different time under water for 7 days , 28 days , 60 days . The optimum consideration were given to mechanical properties of the concrete, at different amount of ceramic waste as sand.

Author(s):  
Moatasim Attaelmanan ◽  
Mahgoub Elhaj Mahgoub Kambal ◽  
Mohammed Izzeldeen Mansour

Ceramic waste is one of the most active research areas that encompass a number of disciplines including civil engineering and construction materials. Ceramic waste powder is settled by sedimentation and then dumped away which leads to environmental pollution, in addition to forming dust in summer and threatening both agriculture and public health. Therefore, utilization of the ceramic waste powder in various industrial sectors especially the construction, agriculture, glass and paper industries would help to protect the environment. It is most essential to develop eco-friendly concrete from ceramic waste. In this research replacing the (OPC) cement by ceramic waste powder has been studied accordingly in the range of (0, 10, 15, and 20) % by weight of M-30 grade concrete. Concrete mixtures were produced, tested and compared in terms of compressive and tensile strength to the conventional mixture. These tests were carried out to evaluate the mechanical properties for 7 and 28 days. As a result, the CWP cement concretes decreased the workability retention. The values of average hardened concrete density for concrete mixes with CWP cement are higher than the reference mix in 7 days, but lower than the reference mix in 28 days. The maximum value of compressive strengths at 7 and 28 days and tensile strength was achieved at about 5% CWP concrete mix. CWP slowed the compressive strength development especially at early ages. All mixtures with CWP showed good strength development at 28 days. It was observed that all CWP replacement ratios achieved higher compressive strength than characteristic compressive strength which is equal to 30 N/mm2 in 28 days, except the 20% ratio gives 29.72 N/mm2. Test results showed that CWP has potential to be used as an ingredient in concrete mixtures to partially replacing cement. The study showed that concrete mixtures with ceramic waste powder (CWP) had variable performance of the measured properties depending on the replacement level used.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2019 ◽  
pp. 205-214
Author(s):  
Ikumapayi C. M. ◽  
Adeniji A. A. ◽  
Obisesan A. A. ◽  
Odeyemi O. ◽  
Ajayi J. A.

Concrete is one of the reliable, durable, economical and acceptable construction materials among the building and construction stakeholders worldwide. Performance of concrete could be threatened especially reinforced concrete by some processes such as corrosion, sulfate attack among others. Corrosion of reinforcement in reinforced concrete can be induced by carbonation process. Even though carbonation initiates corrosion, it has been gathered that carbonation could still be of immense benefits to building and construction industries if its mechanism of operation is understudied. This research work has therefore investigated the effect of carbonation on some selected mechanical properties of concrete such as compressive strength, flexural strength, water absorption and weight changes. Concrete cubes and beams of M15 grade with 0.5 % water-cement ratio were prepared and subjected to accelerated carbonation. Their compressive strength, flexural strength, water absorption and weight changes were determined in accordance with the relevant standards. The outcomes show that carbonation improves all the mechanical properties investigated. The use of carbonation can be positively explored in reinforced concrete provided there is adequate nominal cover.


Author(s):  
Diksha Jain

Abstract: This research focuses on studying the effect of Mild Steel Scrap and Crusher Dust on the Properties of Concrete Mixes as a partial replacement of Sand. The trend of mixing several kinds of additional materials such as Glass powder, plastic, Quarry dust, Copper slag, Steel scrap, in building engineering is now growing. Consumption of Crusher dust and Mild steel scrap are one of the lively research area that include the effectiveness of replacement in all the aspects of construction materials. It is very significant to develop eco-friendly concrete from ceramic waste. This Research deals with the experimental study on the mechanical strength properties of M20 grade concrete with the partial replacement of fine aggregate by using crusher dust and mild Steel Scrap. In order to analyze the mechanical properties such as Compressive Strength, Spilt tensile strength, and Workability the samples were casted with mild steel scrap having constant proportion of 5% and crusher dust having 10%, 15% ,20% 25%, 30%, 35%, 40% partial replacement. In second category sand has been partially replaced by mild steel scrap proportion of 10%, 15%, 20%, 25%, 30%, 35% and crusher dust by 20%, 25%, 30% 35% at a different periods of curing 7 days, and 28 days. The optimal of percentage addition of Crusher dust and Mild steel scrap are analyzed considering the needs of mechanical properties of concrete. Keywords: Crusher Dust, Mild Steel Scrap, Compressive Strength, Spilt tensile Strength, Mechanical properties,


2012 ◽  
Vol 2 (6) ◽  
pp. 315-319 ◽  
Author(s):  
F. A. Olutoge ◽  
H. A. Quadri ◽  
O. S. Olafusi

Many researchers have studied the use of agro-waste ashes as constituents in concrete. These agro-waste ashes are siliceous or aluminosiliceous materials that, in finely divided form and in the presence of moisture, chemically react with the calcium hydroxide released by the hydration of Portland cement to form calcium silicate hydrate and other cementitious compounds. Palm kernel shell ash (PKSA) is a by-product in palm oil mills. This ash has pozzolanic properties that enables it as a partial replacement for cement but also plays an important role in the strength and durability of concrete. The use of palm kernel shell ash (PKSA) as a partial replacement for cement in concrete is investigated. The objective of this paper is to alleviate the increasing challenges of scarcity and high cost of construction materials used by the construction industry in Nigeria and Africa in general, by reducing the volume of cement usage in concrete works. Collected PKSA was dried and sieved through a 45um sieve. The fineness of the PKSA was checked by sieving through 45um sieve. The chemical properties of the ash are examined whereas physical and mechanical properties of varying percentage of PKSA cement concrete and 100% cement concrete of mix 1:2:4 and 0.5 water-cement ratios are examined and compared. A total of 72 concrete cubes of size 150 × 150 × 150 mm³ with different volume percentages of PKSA to Portland cement in the order 0:100, 10:90 and 30:70 and mix ratio of 1:2:4 were cast and their physical and mechanical properties were tested at 7, 14, 21 and 28 days time. Although the compressive strength of PKSA concrete did not exceed that of OPC, compressive strength tests showed that 10% of the PKSA in replacement for cement was 22.8 N/mm2 at 28 days; which was quite satisfactory with no compromise in compressive strength requirements for concrete mix ratios 1:2:4. This research showed that the use of PKSA as a partial replacement for cement in concrete, at lower volume of replacement, will enhance the reduction of cement usage in concretes, thereby reducing the production cost. This research was carried out at the University of Ibadan, Ibadan, Nigeria.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haiming Chen ◽  
Yangchen Xu ◽  
Donglei Zhang ◽  
Lingxia Huang ◽  
Yuntao Zhu ◽  
...  

This work is aimed to study the possibility of recycling plastic waste (polypropylene (PP)) as aggregate instead of sand in the manufacturing of mortar or concrete. For this, an experimental study was carried out to evaluate the influence of nano-SiO2 and recycled PP plastic particles' content on physical, mechanical, and shrinkage properties and microstructure of the mortars with recycled PP plastic particles. The sand is substituted with the recycled PP plastic particles at dosages (0%, 20%, 40%, and 60% by volume of the sand). The nano-SiO2 content is 5% by weight of cement. The physical (porosity, water absorption, and density), mechanical (compressive and flexural strength) and shrinkage properties of the mortars were evaluated, and a complementary study on microstructure of the interface between cementitious matrix and PP plastic particles was made. The measurements of physical and mechanical properties showed that PP-filled mortar had lower density and better toughness (higher ratio of flexural strength to compressive strength). However, the compressive strength and flexural strength of PP-filled mortar is reduced, and the porosity, water absorption, autogenous shrinkage, and dry shrinkage increased as compared to normal cement mortar. The addition of nano-SiO2 reduced the porosity, water absorption, and drying shrinkage of PP-filled mortar and effectively improved the mechanical properties, but increased its autogenous shrinkage. A microscopic study of the interfacial zone (plastic-binder) has shown that there is poor adhesion between PP plastic particles and cement paste. From this work, it is found that recycled PP plastic waste has a great potential to be a construction material. It can be used as partial replacement of natural aggregates instead.


2020 ◽  
Vol 7 (1) ◽  
pp. 7-16
Author(s):  
Esau Abekah Armah ◽  
Hubert Azoda Koffi ◽  
Josef K Ametefe Amuzu

This study explore the possibility of using waste ground palm kernel (GPK) shells as partial replacement of cement in concrete using mechanical destructive method has been studied. The palm kernel shells were in two forms: the GPK ordinary shells and shells subjected to incomplete combustion (i.e. the GPK “fuel” shells. In the preparation of the concrete specimens the mix ratio was 1: 2: 4 (cement: sand: stone) by weight and The replacement percentage was 0%, 20%, 30%, 40%, 50% and 60% respectively.  Concrete specimen were molded in both cubic and cylindrical form and its impact on the mechanical properties such as workability, compressive strength and flexural strength using destructive test method were studied. The cubic specimen were tested at 7, 28 and 60 days whiles the cylindrical specimen were tested at 7 and 28 days. Results of physical and chemical analyses suggest that GPK “fuel” shells have acceptable cementitious properties whiles GPK ordinary shells does not. Generally, the compressive and flexural strengths of concrete containing GPK shells decrease as the replacement percentage increases. However, the values of these properties increase as the period of curing increases. The optimum level of GPK shells replacement is 20% for the ordinary shells and 30% for the “fuel” shells considering compressive strength at 28 days for the cubic samples. For the flexural strength on the cylindrical specimen, up to 60% replacement of cement by GPK shells cured for 28 days has acceptable flexural strength. In spite of the findings that the GPK ordinary shells do not have cementitious properties, the mechanical properties on such concretes can be used in low strength constructions as pavements, walk ways and non structural domestic work at a lower cost than using cement.


2020 ◽  
Vol 6 ◽  
pp. 12-23
Author(s):  
Anwar Saad Abbas ◽  
Mohammed Mansour Kadhum

This research aims to shed light on the fire flame effect on some mechanical properties of SIFCON samples, such as compressive strength, flexural strength and modulus of elasticity and comparing the results with CEN design curve and CEB. Higher temperature resistance is one of the most important parameters affecting the durability and service life of the material. This study comprised of casting and testing SIFCON specimens with 6% fiber volume before and after exposure to elevated temperatures. Two fire exposure duration of 1 and2 hours were investigate. In addition to room temperature, Silica fume was used as a partial replacement (10%) by weight of cement. It was found from the results achieved that after exposure to high temperatures, compressive strength, flexural strength and elastic modulus decreased. The drastically reduction of compressive strength took place with increasing temperature.  The residual compressive strength, flexural strength and elastic modulus at 1010 °C were in the range of (58.4 to 80.1%), (81.6 to 78.7%) and (30.4 to 32.8%) respectively. The compressive strength test results of this study together with results obtained by other investigators were compared with CEB strength-reduction curve and that of CEN. It was noticed that the test results agreed with CEN design curve rather than with that of CEB.


Author(s):  
Sindhu Vaardini U ◽  
Pon Soundarya M

Disposal of large quantity of plastic causes land, water, and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed shredded plastic waste in concrete. Several tests are conducted such as compressive strength of cube, compressive strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using shredded plastic aggregate. Replacement of fine aggregate weight by 0%, 5%, 10%, 15%, 20% with shredded plastic fine (PF) aggregate and manufactured sand (M-Sand). Totally 30 cubes, 30 cylinders and 30 prisms are casted to identify the compressive strength, cylindrical compressive strength, and flexural strength respectively. Casted specimens are tested at 7, 14 and 28 days. The identified results from concrete using shredded plastic aggregate are compared with conventional concrete. Result shows that initially there is increase in mechanical properties then there is reduction in mechanical properties due to addition of shredded plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and shredded plastic aggregate.


Author(s):  
Mantu Kumar

Abstract: Among all the current construction materials, concrete occupies a unique position. Concrete is the most often utilised building material. Cement production emits CO2, which is harmful to the environment. One of the most crucial ingredients in concrete production is cement. Experiments were carried out to see how different percentages of Fly Ash and GGBS affected the mechanical qualities of M60 grade concrete. After 7, 14, and 28 days of curing, the compressive strength of concrete cubes with suggested replacement was determined. Compressive strength, split tensile strength, and flexural strength are all evaluated on the cubes, cylinders, and prisms. The primary goal of this study is to compare the fresh and hardened characteristics of M-60 grade control concrete with concrete prepared with varied ratios of fly ash and GGBS Keywords: GGBS, Fly Ash, Durability, Compressive Strength, Tensile Strength, Flexural Strength, Slum cone Test


Sign in / Sign up

Export Citation Format

Share Document