scholarly journals A Novel Compact MIMO Planar Inverted-F Antenna (PIFA) for Future 5G Wireless Devices

2018 ◽  
Vol 7 (4.5) ◽  
pp. 320
Author(s):  
Neha Loharia ◽  
Shashi B. Rana ◽  
Naveen Kumar

In the last decade, mobile communication has shown a tremendous growth in various categories of wireless communication. A novel miniature MIMO Planar inverted F Antenna (PIFA) for 5G future communication has been presented in this paper as a MIMO antenna working at 10 GHz band is not available in recent literature. The proposed PIFA has low profile structure with two radiating elements on its opposite edges. The proposed 5G frequency band of 10 GHz is covered by the MIMO antenna. Various antenna & MIMO performance parameters such as isolation, return loss, VSWR, diversity gain, ECC and radiation pattern are also presented and discussed. Simulated and measured results are in good match with each other.  

2021 ◽  
Author(s):  
Ashok kumar ◽  
Rajveer Singh Yaduvanshi

Abstract In this article Spherical DRA has been formulated , simulated and proto type developed. The detailed theoretical analysis along with simulations and measured results at 5.8 GHz have been presented in this article. The SDRA at 5.8 GHz covering 5G frewuenci band. The proposed design antenna provides the gain of 7.3 dB and return loss -25 dB. The measured results are in good match with simulated result. The proposed SDRA are good for 5G wireless networks, as well as other sub-6 band in wireless communication systems.


2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Sanjay Chouhan ◽  
Leeladhar Malviya

Compact antenna, appropriate gain, high efficiency, wide bandwidth, minimum envelope correlation coefficient (ECC), large total active reflection coefficient (TARC) bandwidth, and low specific absorption rate (SAR) are certain conditions set on the present/future generations of wireless communication antennas with the lowest cost of implementation. A compact low profile folded MIMO antenna has been designed using CST tool to cover application at 5.2 GHz. The reported folded MIMO antenna has bandwidth of 600 MHz (5.0-5.6 GHz) and has fractional bandwidth of 11.32 % along with the compact size of 37.5 × 17.0 mm2 . The reported MIMO antenna has ECC of < 10-2. The proposed folded MIMO antenna resonates at 5.2 GHz and has return loss of -44.0 dB. The inter-port isolation in antenna ports is > 11.50 dB in the defined frequency band. The response of TARC shows > 580 MHz of bandwidth with pair of excitation angles at antenna ports. The gain of antenna is > 3.0 dBi in the operating band. The reported radiating geometry makes the design very compact. To check the radiation effect on human body in different positions, the SAR is evaluated for indoor environment.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Adam R. H. Alhawari ◽  
Tale Saeidi ◽  
Abdulkarem Hussein Mohammed Almawgani ◽  
Ayman Taher Hindi ◽  
Hisham Alghamdi ◽  
...  

A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8–31 GHz) and vertically polarized (7.6–37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7–3.85 GHz and 5–40 GHz are achieved. Low mutual coupling of less than −22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with = 1.4 and h= 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna’s characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.


In this paper, simple triband Multiple Input and Multiple Output (MIMO) antenna is proposed for wireless communication technology. This antenna consists of two symmetric monopoles which are placed at a distance of 0.106λ0 and for board area it occupies 0.25λ0*0.26λ0 . By integrating a stub in the ground plane and adding the stub in the feed line, isolation is achieved more than 20dB.This triband MIMO antenna operates under 2.5GHz, 3.3GHz and 4.4 GHz. The proposed antenna gives Radiation Patterns and Stable Gain. Mean effective gain (MEG) and Diversity Gain (DG) are also measured.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012029
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhir ◽  
Ahmed A. Naser

Abstract For any wireless communication, the antenna plays a very important role. The request for this technology is reduced antenna size, weight, and cost with a low profile, high performance, and low return loss (RL). To meet these requirements, the microstrip patch antenna (MPA) can be used. This research represents the design and manufacture of the MPA for the 2.4 GHz applications with very low RL and perfect voltage standing wave ratio (VSWR). Computer simulation technology (CST) studio is used to design and simulation. The proposed MPA is fabricated on flame retardant (FR-4) material as a substrate. The results show that the MPA is capable to deal with RL of -38.86 dB at the frequency of 2.393 GHz with a bandwidth (BW) of 58 MHz and VSWR of 1.02. The volume of the antenna is 75.85 × 57.23 × 1.6 mm 3.


2019 ◽  
Vol 12 (2) ◽  
pp. 95-100
Author(s):  
Purnima Sharma ◽  
Akshi Kotecha ◽  
Rama Choudhary ◽  
Partha Pratim Bhattacharya

Background: The Planar Inverted-F Antenna (PIFA) is most widely used for wireless communication applications due to its unique properties as low Specific Absorption Rate, low profile geometry and easy fabrication. In literature a number of multiband PIFA designs are available that support various wireless applications in mobile communication, satellite communication and radio frequency field. Methods: In this paper, a miniature sized planar inverted-F antenna has been proposed for dual-band operation. The antenna consists of an asymmetrical pentagonal shaped patch over an FR4 substrate. The overall antenna dimension is 10 × 10 × 3 mm3 and resonates at 5.7 GHz frequency. A modification is done in the patch structure by introducing an asymmetrical pentagon slot. Results: The proposed pentagonal antenna resonates at 5.7 GHz frequency. Further, modified antenna resonates at two bands. The lower band resonates at 5 GHz and having a bandwidth of 1.5 GHz. This band corresponds to C-band, which is suitable for satellite communication. The upper band is at 7.9 GHz with a bandwidth of 500 MHz. Performance parameters such as return loss, VSWR, input impedance and radiation pattern are obtained and analysed using ANSYS High- Frequency Structure Simulator. The radiation patterns obtained are directional, which are suitable for mobile communication. Conclusion: The antenna is compact in size and suitable for radar, satellite and vehicular communication.


Author(s):  
Laura Stark

This chapter surveys and analyzes recent literature on mobile communication to examine its relationship to gender and development, more specifically how women in developing countries use and are impacted by mobile phones. Focusing on issues of power, agency, and social status, the chapter reviews how mobile telephony has been found to be implicated in patriarchal bargaining in different societies, how privacy and control are enabled through it, what benefits have been shown to accrue to women using mobile phones, and what barriers, limitations, and disadvantages of mobile use exist for women and why. The conclusion urges more gender-disaggregated analysis of mobile phone impact and use and offers policy and design recommendations based on the overview and discussion.


Sign in / Sign up

Export Citation Format

Share Document