scholarly journals Analysis Of Quality Of Service (Qos) Youtube Streaming Video Service In Wireless Network In The Environment Faculty Of Science And Technology Uin Sunan Kalijaga

Author(s):  
Asep Wishnu ◽  
Bambang Sugiantoro

The growing number of internet users in Indonesia, making the number of users increasing especially video streaming on Youtube service. This increase is based on rapid technological developments, especially PCs, Laptops and Smartphones that use wireless or wireless internet access. The use of streaming video over wireless networks is different from cable networks Because The characteristics of wireless networks are limited Compared to wired networks, and the characteristics of streaming video transmissions that require different handling than traditional text, and the data transmissions. As a first step towards Achieving an optimum Internet network service effort, Applies Action Research This research method by utilizing video quality with 360p, 480p, and 720p. The QOS parameters Analyzed Consist of delay, jitter, throughput, packet loss and bandwidth using wireshark and NetTools for the testing phase. The results of analysis using QoS for streaming video shows the performance of wireless network services at UIN Sunan Kalijaga, Faculty of Science and Technology is still not maximal especially on video with 480p quality, that has a 20 ms delay and jitter quality level ms According -0.0269 to TIPHON is very good. The amount of throughput is 0:55 MBps throughput and the percentage is 3% and the packet loss value is 28%, if it is Categorized by TIPHON standardization bad this value falls into the category. For the average bandwidth used is 329 714 bps value.

2021 ◽  
Vol 4 (2) ◽  
pp. 345-355
Author(s):  
Muhammad Nuzuluddin ◽  

At Present, many schools have used wireless networks that are used to support wired networks. Cable network is used as an amplifier of access point to make internet access for users. The problems of networking using these cables can be a major constraint to inaccessible places that can reduce the flexibility of usage. The solution for this problem is to develop and implement Wireless Distribution System (WDS) on the access point. WDS is a system to develop wireless internet network without having to use cable as backbone for access point but to take advantage of wireless network path from access point. The parameters used in the WDS system are the parameters of jitter, througput, delay and packet loss. WDS performance can be analyzed so that will be known comparison of access point performance results with cable backbone


Author(s):  
Alexander Olave ◽  
Luis Felipe Valencia ◽  
Juan Carlos Cuéllar

Resumen Voz sobre IP, VoIP, es uno de los servicios con mayor desarrollo bajo plataformas inalámbricas; actualmente se ha iniciado su implementación como alternativa frente a la PSTN (red pública conmutada). El interés por VoIP radica en su relación costo-beneficio, ya que las organizaciones pueden utilizar la misma plataforma de su red de datos para transmitir voz. Por lo anterior, es importante que la organización tenga claro que, para garantizar el buen funcionamiento del servicio de VoIP, es decir para ofrecer QoS, se debe realizar la medición de parámetros que afectan la calidad del servicio como lo son: el retardo, la variación del retardo, el ancho de banda y la pérdida de paquetes. Este artículo analiza y valida los parámetros de QoS necesarios para garantizar el buen funcionamiento del servicio de VoIP sobre la red inalámbrica del campus de la Universidad Icesi. Se realizan pruebas en diferentes escenarios para mostrar que no solo factores como el retardo, y su variación, influyen en la calidad de servicio, sino que también la intensidad de la señal que recibe el cliente desde los puntos de acceso.Palabras Clave: Voz sobre IP, Calidad de servicio, Pérdida de paquetes, Retardo, Variación del Retardo, Intensidad de Señal. Abstract VoIP is one of the services that has been developing over under this type of wireless platforms and today has begun to implement as an alternative to the PSTN (Public Switched Telephone Network). The interest in VoIP is its cost-benefit ratio, and that organizations can use the same platform for their data network to transmit voice. Therefore it is important that the organization is clear that to ensure the smooth operation of the VoIP service, ie provide QoS, you must perform the measurement of parameters that affect the quality of service such as: delay, jitter, bandwidth, packet loss. In this paper we analyze and validate the QoS parameters needed to ensure the smooth operation of VoIP over wireless network on the Icesi University campus. We performed a series of tests in different scenarios to show that not only factors such as delay and jitter influencing the quality of service, but also the client signal strength received from of the AP (Access Point).Keywords: Voice over IP, Quality of service, Packet Loss, Delay, Delay variation, signal intensity.


2020 ◽  
Author(s):  
Gustavo Cainelli ◽  
Max Feldman ◽  
Tiago Rodrigo Cruz ◽  
Ivan Muller ◽  
Carlos Eduardo Pereira

The use of industrial wireless networks has been growing continuously and it hasbecome an alternative to wired networks. One of the main elements of an industrial wireless network is the network manager, this component is responsible for tasks related to the network construction and maintenance. This work presents the development of a network manager compatible with the WirelessHART protocol, but also customizable, where it is possible to make modifications in order to carry out studies with this protocol. Case studies are presented where the developed tool was used for studies related to communications scheduling, adaptive channel mapping and fast data collection, thus proving the efficiency of the proposed manager.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Salma Rattal ◽  
Abdelmajid Badri ◽  
Mohammed Moughit

Nowadays, VoIP is a technology with a great demand and wireless networks are increasingly deployed. Each of these has its own technology constraints. For VoIP, it is very important to take into consideration the need to provide a high quality service according to well-defined standard transmission (jitter, end-to-end delay, MOS, and packet loss). However, wireless networks (IEEE 802.11) are based on radio which undergoes a number of technical constraints to achieve theoretical transmission rates; among these constraints the number of users of the networks, the distance between the client and the access, and the amount of data transmitted point are included. In this term, a study is made by simulating wireless network in OPNET Modeler with a fairly large number of VoIPs (15 users) whose signaling is handled via a new node that was created specifically to manage the signaling tasks under SIP and H.323 in order to minimize the number of nodes in the network and avoid the congestion. In this paper, two scenarios are compared; the first contains a number of VoIP users with SIP and H.323 signaling handled by the new created device; the second scenario is similar to the first except that the distance between the stations is remarkably lower.


2008 ◽  
Vol 2008 ◽  
pp. 1-21
Author(s):  
Monchai Lertsutthiwong ◽  
Thinh Nguyen ◽  
Alan Fern

Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC) protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches.


2019 ◽  
Vol 9 (3) ◽  
pp. 35-40
Author(s):  
Mitra Unik ◽  
Soni Soni ◽  
Randra Aguslan Pratama

Abstract One of the popular internet services in use today is video streaming, either live (live streaming) or pre-recorder. Streaming video is a type of streaming media where data from video files is continuously transmitted over the internet to remote users. This fundamental problem appears to be influenced by the biggest factor which is the limited infrastructure of network resources which causes poor video quality. The process of digital video communication is known to consume quite a large resource, because in general the bandwidth requirements for sending Video and Audio signals. To maintain the quality of the video being played, there are several instruments needed, one of which is a data connection that is required to have Quality of Service (QoS). The parameters used in the measurement of QoS are delay, jitter, packet loss, throughput. This study uses the PPDIO method as a workflow with a Network Lifecycle approach. In this research, there are many factors that influence the quality of video, namely network factors and hardware factors. The test results obtained are not absolute, so it is possible that there will be differences in subsequent testing. Encoding also affects the quality of the video. Bandwidth equalization according to priority when the traffic conditions of all packets are full. Based on a comparative analysis of QoS parameter calculations using HTB and Diffserv methods, a comparison of throughput, jitter and delay does not differ greatly between clients. Keywords: Video Streaming, Diffserv, HTB, QoS Abstrak Salah satu layanan dari internet yang populer digunakan saat ini adalah video streaming, baik secara langsung (live streaming) atau pre-recorder. Streaming video merupakan jenis streaming media dimana data dari file video secara terus menerus dikirimkan melalui jaringan internet ke pengguna jarak jauh. Permasalahan mendasar ini muncul dipengaruhi oleh faktor terbesar yaitu terbatasnya infrastruktur sumber daya jaringan yang menyebabkan kualitas video yang buruk. Proses  komunikasi  digital  video,  diketahui  menghabiskan  resource  yang  cukup  besar, dikarenakan Secara umum kebutuhan bandwidth untuk mengirimkan sinyal Video dan Audio. Guna menjaga kualitas dari video yang dimainkan, terdapat beberapa instrument yang dibutuhkan, salah satunya adalah koneksi data yang wajib memiliki Quality of Service (QoS). Adapun Parameter yang digunakan dalam pengukuran QoS adalah delay, jitter, packet loss, Throughput. Penelitian ini menggunakan metode PPDIO sebagai alur kerja dengan pendekatan Network Lifecycle. Pada penelitian ini didapat Banyak faktor yang mempengaruhi kualitas dari video yaitu faktor jaringan dan faktor dari Hardware. Hasil pengujian didapat tidaklah mutlak sehingga tidak menutup kemungkinan akan ada perbedaan pada pengujian selanjutnya. Encoding juga mempengaruhi kualitas dari video. pemerataan Bandwidth sesuai prioritasnya saat kondisi traffic seluruh paket penuh. Berdasarkan analisa perbandingan perhitungan parameter QoS menggunakan metode HTB dan Diffserv, didapatkan  perbandingan troughput, jitter dan delay yang tidak berbeda jauh antara klien. Kata kunci: Video streaming, Diffserv, HTB, QoS  


2018 ◽  
Vol 7 (3.34) ◽  
pp. 226
Author(s):  
K Lavanya ◽  
Dr R.Kanthavel ◽  
Dr R.Dhaya

Transferring high quality video stream through a heterogeneous wireless network has many challenges due to the varying data rate and round trip time(RTT) involved in the network and the more stringent quality of service(QoS) requirements of the multimedia application such as on time delivery , minimum delay etc. User datagram protocol (UDP), a connectionless, unreliable transport protocol has been widely used for transferring video frames.UDP cannot guarantee reliable information delivery and  may lead to packet loss. The packet loss, increases with time varying bandwidth availability in the heterogeneous wireless networks. Transmission control protocol(TCP) can be an alternate transport layer protocol to provide reliable delivery of video information. But, using TCP for wireless networks has limitations due to misinterpretation of packet loss, frequent link failure, asymmetric link behaviour etc.,. which minimizes the throughput and in turn degrades the quality of the video frames transmitted. This paper analyses an efficient scheme to use Heterogeneous Environment Retransmission algorithm with SCTP (HERTS) to transfer video data in the heterogeneous environment. By using multi-homing and multi-streaming feature of Stream control transmission protocol (SCTP), the packet delivery rate, through put and delay requirements can be optimized. The transport layer model suggested in this paper aims at reducing the occupancy of the retransmitted packets in the link, by using a separate end to end path allotted for retransmission.  


2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Won-Suk Kim ◽  
Sang-Hwa Chung

Management of wireless networks as well as wired networks by using software-defined networking (SDN) has been highlighted continually. However, control features of a wireless network differ from those of a wired network in several aspects. In this study, we identify the various inefficient points when controlling and managing wireless networks by using SDN and propose SDN-based control architecture called Proxcon to resolve these problems. Proxcon introduces the concept of a proxy SDN controller (PSC) for the wireless network control, and the PSC entrusted with the role of a main controller performs control operations and provides the latest network state for a network administrator. To address the control inefficiency, Proxcon supports offloaded SDN operations for controlling wireless networks by utilizing the PSC, such as local control by each PSC, hybrid control utilizing the PSC and the main controller, and locally cooperative control utilizing the PSCs. The proposed architecture and the newly supported control operations can enhance scalability and response time when the logically centralized control plane responds to the various wireless network events. Through actual experiments, we verified that the proposed architecture could address the various control issues such as scalability, response time, and control overhead.


Author(s):  
Dr.Yasser A. Seleman

Network is a technology used to connect computers and devices together. They allow people the ability to move easily and stay in touch while roaming the Internet in the coverage area. This increases efficiency by allowing data entry and access to the site. Comparing wireless networks wired networks in terms of cost, we find that wired networks are more expensive due to the cost of the network connections of electricity and running and add computers and change their positions to suit the network supply.   As a result, the use of widespread wireless networks. But there are security gaps in these networks may cause problems for users Security holes intended problem or weakness in the wireless network system may make it easier for hackers to penetrate and steal sensitive data and causing material losses to individuals and companies. Knowing security holes and contributes significantly to the wireless network is immune from attempts to infiltrate and penetration design Keywords—Protocol: Language is between computers connected via the network, in order to exchange information. If we define the language of the Protocol technology, we say that a formal description of the bodies messages and rules that must be followed on two computers to exchange those messages.


Sign in / Sign up

Export Citation Format

Share Document