scholarly journals The Effect of Hydro-Alcoholic Extract of Nigella sativa on Bmp7 and Bmp8b Expression in Rats Fed with a High-Fat Diet

Author(s):  
Akram Yaghoobi ◽  
Keihan Ghatreh Samani ◽  
Effat Farrokhi

Background: Bone morphogenetic protein7 (BMP7) and bone morphogenetic protein 8b (BMP8b) can induce browning of white adipose tissue. Objectives: The present study aimed to investigate the antioxidative effects of hydro-alcoholic extract of Nigella sativa on the repair of oxidative damage caused by a high-fat diet. Also, Bmp7 and Bmp8b gene expressions were investigated on white adipose tissue of the rats and then compared with metformin effects. Methods: Eighty rats were divided into two groups of prevention and treatment; then each set was divided into four sub-groups based on the administered diet (i.e., ordinary, fat, metformin, and extract of Nigella sativa). Lipid profile, paraoxonase1, malondialdehyde (MDA), HDL, and antioxidant capacity were measured in serum samples, and relative Bmp7 and Bmp8b gene expressions were calculated in white adipose tissue. Results: For both prevention and treatment sets, the weight of rats who received a high-fat diet decreased more compared to those in the normal diet group. The weight of rats who received metformin or nigella extract was also decreased compared to the high-fat diet group. MDA was also increased, but total antioxidant capacity and catalase were decreased in rats of the high-fat diet group compared to the normal diet group. MDA was also declined in nigella receiving rats, but liver PON1 activity, total antioxidant capacity, and catalase were increased, compared to the second group (P < 0.05). In the prevention and treatment set, Bmp8b gene expression was increased in the metformin and Nigella sativa groups, whereas it was decreased among those who received a high-fat diet. Bmp7 gene expression was decreased in the high-fat diet set, but metformin and Nigella sativa extract didn’t influence Bmp7 gene expression. Conclusions: This study demonstrated that Nigella sativa extract has a protective role against oxidative stress in a high-fat diet.

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qishu Zhou ◽  
Chunyu Liang ◽  
Yafei Li ◽  
Yi Yan

Objective  To investigate the effect of one-time high-intensity intermittent exercise in white fat autophagy in obese rats and provide a theoretical basis of the molecular mechanism of exercise fat loss. Methods  Eighteen male 3-weeks-old rats were selected and divided into control group fed with normal diet (C), high-fat diet group fed with high fat diet (H). After 16 weeks, there were twelve obesity rats that divided into diet group (HS) and exercise group (HE). The other six control group rats of 19 weeks age were used as the standard (CS group). OE group did the high intensity intermittent exercise once. The CS group and the CS group were kept quietly. Three groups were taken subcutaneous white adipose tissue(S) and epididymal white adipose tissue (E) immediately after exercise. Mensurate the expression of LC3 gene in the tissue using the fluorescent quantitative PCR. Results 1. The expression of LC3 mRNA from white fat tissue was different to the tissues, which the expression of epididymal white adipose tissue of each group was higher than that in subcutaneous white adipose tissue (P <0.01). 2. Compared with CS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.01) and the expression of the subcutaneous white adipose tissue increased from HS group (P <0.05). 3. Compared with OS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.05) and the expression of subcutaneous white adipose tissue decreased from OS group. Conclusions The expression of LC3mRNA in epididymal white fat adipose tissue of rats was significantly higher than that of subcutaneous white fat. The changes of LC3mRNA expression of adipose tissue caused by high-fat diet have tissue differences. One-time high-intensity intermittent exercise can reduce the expression of LC3mRNA in fat tissue of obese rats. Its regulatory mechanism needs to be further studied.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Nobutomo Ikarashi ◽  
Takahiro Toda ◽  
Takehiro Okaniwa ◽  
Kiyomi Ito ◽  
Wataru Ochiai ◽  
...  

Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice. KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks. After the end of administration, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue. As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups. Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle. Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group. Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver. AP also increased mRNA expression of adiponectin and decreased expression of TNF-αin white adipose tissue. In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver. These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome.


2019 ◽  
Vol 316 (3) ◽  
pp. H485-H494
Author(s):  
Sugata Hazra ◽  
Grant D. Henson ◽  
R. Colton Bramwell ◽  
Anthony J. Donato ◽  
Lisa A. Lesniewski

Blood flow regulation is a critical factor for tissue oxygenation and substrate supply. Increased reactivity of arteries to vasoconstrictors may increase vascular resistance, resulting in reduced blood flow. We aimed to investigate the effect of a high-fat (HF) diet on stiffness and vasoconstrictor reactivity of white adipose tissue (WAT) and brown adipose tissue (BAT) resistance arteries and also investigated the interconversion of both adipose depots in the setting of a HF diet. Vasoconstrictor reactivity and passive morphology and mechanical properties of arteries from B6D2F1 mice (5 mo old) fed normal chow (NC) or a HF diet (8 wk) were measured using pressure myography. Receptor gene expression in WAT and BAT arteries and markers of WAT and BAT were assessed in whole tissue lysates by real-time RT-PCR. Despite greater receptor-independent vasoconstriction (in response to KCl, P < 0.01), vasoconstriction in response to angiotensin II ( P < 0.01) was lower in NC-BAT than NC-WAT arteries and similar in response to endothelin-1 ( P = 0.07) and norepinephrine ( P = 0.11) in NC-BAT and NC-WAT arteries. With the exception of BAT artery reactivity to endothelin-1 and angiotensin II, the HF diet tended to attenuate reactivity in arteries from both adipose depots and increased expression of adipose markers in BAT. No significant differences in morphology or passive mechanical properties were found between adipose types or diet conditions. Alterations in gene expression of adipose markers after the HF diet suggest beiging of BAT. An increase in brown adipocytes in the absence of increased BAT mass may be a compensatory mechanism to dissipate excess energy from a HF diet. NEW & NOTEWORTHY Despite no differences in passive mechanical properties and greater receptor-independent vasoconstriction, receptor-mediated vasoconstriction was either lower in brown than white adipose tissue arteries or similar in brown and white adipose tissue arteries. A high-fat diet has a greater impact on vasoconstrictor responses in white adipose tissue but leads to altered adipose tissue gene expression consistent with beiging of the brown adipose tissue. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/vasoconstriction-in-white-and-brown-adipose/ .


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ali Amirinejad ◽  
Ali Saneei Totmaj ◽  
Farzaneh Mardali ◽  
Azita Hekmatdoost ◽  
Hadi Emamat ◽  
...  

Abstract Background Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. The aim of this study was to evaluate the effects of hydro-alcoholic extract of spinach (HES) on hepatic and serum measurements of NAFLD in a rat model. Methods In the prevention phase, 18 Sprague–Dawley rats were fed a high-fat diet, a high-fat diet plus 400 mg/kg HES, or a chow diet for seven weeks. For the treatment phase, after the induction of NAFLD, they were fed a high-fat diet, a high-fat diet plus 400 mg/kg HES, a chow diet, or a chow diet plus 400 mg/kg HES for four weeks (n = 6). Results Administration of HES combined with high-fat diet in rats was associated with decreased food intake (P < 0.01), weight loss (P = 0.01), and increased superoxide dismutase (SOD) (P = 0.02) enzyme activity in the liver, at the end of the prevention phase. hs-CRP (P < 0.05), PTX-3 (P < 0.05), and TNF-α (P < 0.05) gene expression in the liver were decreased and PPAR-γ (P < 0.05) gene expression in the liver was increased by spinach intake, both in the prevention and treatment phases. Furthermore, administration of spinach in the treatment phase increased serum TAC (P = 0.03) and hepatic GPX (P = 0.01) enzyme activity. Conclusion Taking into account the potential beneficial effects of HES on prevention and treatment of NAFLD in the present study, to confirm these findings, we propose that further clinical trials be conducted on human subjects with NAFLD.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2262 ◽  
Author(s):  
Kim ◽  
Jang ◽  
Lee

: Allium hookeri (AH) is widely consumed as a herbal medicine. It possesses biological activity against metabolic diseases. The objective of this study was to investigate effects of AH root water extract (AHR) on adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice. AHR inhibited lipid accumulation during adipocyte differentiation by downregulation of gene expression, such as hormone sensitive lipase (HSL), lipoprotein lipase (LPL) and an adipogenic gene, CCAAT/enhancer binding protein-α in 3T3-L1 preadipocytes. Oral administration of AHR significantly suppressed body weight gain, adipose tissue weight, serum leptin levels, and adipocyte cell size in HFD-induced obese mice. Moreover, AHR significantly decreased hepatic mRNA expression levels of cholesterol synthesis genes, such as 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding transcription factor (SREBP)-2, and low-density lipoprotein receptor, as well as fatty acid synthesis genes, such as SREBP-1c and fatty acid synthase. Serum triglyceride levels were also lowered by AHR, likely as a result of the upregulating gene involved in fatty acid β-oxidation, carnitine palmitoyltransferase 1a, in the liver. AHR treatment activated gene expression of peroxisome proliferator-activated receptor-γ, which might have promoted HSL and LPL-medicated lipolysis, thereby reducing white adipose tissue weight. In conclusion, AHR treatment can improve metabolic alterations induced by HFD in mice by modifying expression levels of genes involved in adipogenesis, lipogenesis, and lipolysis in the white adipose tissue and liver.


2021 ◽  
Vol 23 (3) ◽  
pp. 124-130
Author(s):  
Saeed Daneshyar ◽  
Mehdi Bahmani ◽  
Yazdan Fourotan

Background and aims: Beta-adrenergic signaling deficiency has been established to be related to obesity and related diseases. Beta3- adrenergic receptor (Adrb3) and beta-arrestin2 (Barr2) are pivotal agents in the beta-adrenergic-signaling pathway. This study aimed to investigate the preventive effect of aerobic training on dysregulation of Adrb3 and Barr2 gene expression that was induced by high-fat diet (HFD) in inguinal white adipose tissue of mice. Materials and Methods: Twenty-one C57BL/6 mice were assigned to three groups as follows: 1) control group (n=7), 2) high-fat diet-induced overweight (HFD-OW) (n=7), and 3) high-fat diet with aerobic training (HFD-AT) (n=7). The HFD-OW group were fed with a HFD for 12 weeks. The HFD-AT group had aerobic training for six weeks on a treadmill in addition to feeding with the HFD. The real-time polymerase chain reaction (PCR) method was used to measure the gene expression of Adrb3 and Barr2 in inguinal white adipose tissue. Results: The gene expression of Adrb3 did not significantly change between groups (P>0.05). However, the expression of Barr2 in HFD-OW group was significantly increased as compared to the control group (1.5-fold: P=0.001). Interestingly, the Barr2 expression in HFD-AT group was significantly lower compared with HFD-OW group (P=0.045). Conclusion: The results indicated that aerobic training could inhibit the upregulation of Barr2 induced by HFD. It seems that a portion of the preventive effect of aerobic training on the development of obesity may be mediated by inhibiting the Barr2 expression in adipose tissue.


2004 ◽  
Vol 318 (1) ◽  
pp. 234-239 ◽  
Author(s):  
I.P López ◽  
F.I Milagro ◽  
A Martı́ ◽  
M.J Moreno-Aliaga ◽  
J.A Martı́nez ◽  
...  

2021 ◽  
pp. 153537022110060
Author(s):  
Yue Chen ◽  
Jie Ding ◽  
Yufei Zhao ◽  
Shenghong Ju ◽  
Hui Mao ◽  
...  

This study aimed to track and evaluate the effect of low-dose irisin on the browning of white adipose tissue (WAT) in mice using magnetic resonance imaging (MRI) noninvasively in vivo. Mature white adipocytes extracted from mice were cultured, induced and characterized before being treated by irisin. The volume and fat fraction of WAT were quantified using MRI in normal chow diet and high fat mice after injection of irisin. The browning of cultured white adipocytes and WAT in mice were validated by immunohistochemistry and western blotting for uncoupling protein 1 (UCP1) and deiodinase type II (DIO2). The serum indexes were examined with high fat diet after irisin intervention. UCP1 and DIO2 in adipocytes showed increases responding to the irisin treatment. The size of white adipocytes in mice receiving irisin intervention was reduced. MRI measured volumes and fat fraction of WAT were significantly lower after Irisin treatment. Blood glucose and cholesterol levels were reduced in high fat diet mice after irisin treatment. Irisin intervention exerted browning of WAT, resulting reduction of volume and fat fraction of WAT as measured by MRI. Furthermore, it improved the condition of mice with diet-induced obesity and related metabolic disorders.


Author(s):  
Sihoon Park ◽  
Jae-Joon Lee ◽  
Hye-Won Shin ◽  
Sunyoon Jung ◽  
Jung-Heun Ha

Soybean koji refers to steamed soybeans inoculated with microbial species. Soybean fermentation improves the health benefits of soybeans. Obesity is a serious health concern owing to its increasing incidence rate and high association with other metabolic diseases. Therefore, we investigated the effects of soybean and soybean koji on high-fat diet-induced obesity in rats. Five-week-old male Sprague-Dawley rats were randomly divided into four groups (n = 8/group) as follows: (1) regular diet (RD), (2) high-fat diet (HFD), (3) HFD + steamed soybean (HFD+SS), and (4) HFD + soybean koji (HFD+SK). SK contained more free amino acids and unsaturated fatty acids than SS. In a rat model of obesity, SK consumption significantly alleviated the increase in weight of white adipose tissue and mRNA expression of lipogenic genes, whereas SS consumption did not. Both SS and SK reduced serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels, and increased high-density lipoprotein cholesterol levels. SS and SK also inhibited lipid accumulation in the liver and white adipose tissue and reduced adipocyte size. Although both SS and SK could alleviate HFD-induced dyslipidemia, SK has better anti-obesity effects than SS by regulating lipogenesis. Overall, SK is an excellent functional food that may prevent obesity.


Sign in / Sign up

Export Citation Format

Share Document