scholarly journals PO-178 Heat Treatment and Exercise Prevents Skeletal Muscle Insulin Resistance in Wistar Rats Fed High-Fat Diet

2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Jiexiu Zhao ◽  
Fei Qin ◽  
Minxiao Xu ◽  
Yanan Dong ◽  
Zhongwei Wang ◽  
...  

Objective  Insulin resistance (IR) is associated with many related health complications. Previous studies demonstrate that heat and exercise independently reduce IR. The purpose of this study was to test the hypothesis that combined exercise and heating is even more favorable in reducing IR. Methods Male Wistar rats were randomly divided into five groups: exercise (NE; n=10), heated (HC; n=10), exercise and heated (HE; n=10), sedentary (NC; n=10), and normal diet plus sedentary (CC; n=10). All but the latter group was fed a high-fat diet (60% calories from fat) for 10 weeks while receiving heat and/or exercise exposure for latter 8 weeks. Following this regimen, protein expression from the soleus and extensor digitorum longus muscles, serum, and brown fat were analyzed using Western blotting. Results Exercise combined with heating shifted the metabolic characteristics of rats on a high-fat diet toward that observed in the rats on a standard diet. Specifically, eight weeks of combined heat and endurance exercise increased PGC-1α, CnA, CaMKIV and p38 MAPK protein expression in the soleus (P < 0.05), insulin protein expression in the serum (P < 0.05), and UCP1 protein expression in the brown fat (P < 0.05), when compared to the high fat fed sedentary group. There were some significant differences in responses (i.e., body weight and Leptin & Adiponectin concentrations) between the combined exercise and heat group relative to the exercise alone group. Conclusions  Exercise combined with heat exposure mitigates the development of IR, presumably from the Irisin pathway. The study provides potential non-pharmaceutical methods for therapeutic treatment of IR.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Qi ◽  
Bo Yang ◽  
Cailing Ren ◽  
Jian Fu ◽  
Jun Zhang

We aimed to investigate whether swimming exercise could improve insulin resistance (IR) by regulating tripartite motif family protein 72 (TRIM72) expression and AKT signal pathway in rats fed with high-fat diet. Five-week-old rats were classified into 3 groups: standard diet as control (CON), high-fat diet (HFD), and HFD plus swimming exercise (Ex-HFD). After 8 weeks, glucose infusion rate (GIR), markers of oxidative stress, mRNA and protein expression of TRIM72, protein of IRS, p-AKTSer473, and AKT were determined in quadriceps muscles. Compared with HFD, the GIR, muscle SOD, and GSH-Px were significantly increased (p<0.05, resp.), whereas muscle MDA and 8-OHdG levels were significantly decreased (p<0.05andp<0.01) in Ex-HFD. Expression levels of TRIM72 mRNA and protein in muscles were significantly reduced (p<0.05andp<0.01), whereas protein expression levels of IRS-1, p-AKTSer473, and AKT were significantly increased in Ex-HFD compared with HFD (p<0.01,p<0.01, andp<0.05). These results suggest that an 8-week swimming exercise improves HFD-induced insulin resistance maybe through a reduction of TRIM72 in skeletal muscle and enhancement of AKT signal transduction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


2021 ◽  
pp. 1-14
Author(s):  
Jian Bao ◽  
Zheng Liang ◽  
Xiaokang Gong ◽  
Jing Yu ◽  
Yifan Xiao ◽  
...  

Background: Alzheimer’s disease (AD) is the most common form of dementia in older adults and extracellular accumulation of amyloid-β (Aβ) is one of the two characterized pathologies of AD. Obesity is significantly associated with AD developing factors. Several studies have reported that high fat diet (HFD) influenced Aβ accumulation and cognitive performance during AD pathology. However, the underlying neurobiological mechanisms have not yet been elucidated. Objective: The objective of this study was to explore the underlying neurobiological mechanisms of HFD influenced Aβ accumulation and cognitive performance during AD pathology. Methods: 2.5-month-old male APP/PS1 mice were randomly separated into two groups: 1) the normal diet (ND) group, fed a standard diet (10 kcal%fat); and 2) the HFD group, fed a high fat diet (40 kcal%fat, D12492; Research Diets). After 4 months of HFD or ND feeding, mice in the two groups were subjected for further ethological, morphological, and biochemical analyses. Results: A long-term HFD diet significantly increased perirenal fat and impaired dendritic integrity and aggravated neurodegeneration, and augmented learning and memory deficits in APP/PS1 mice. Furthermore, the HFD increased beta amyloid cleaving enzyme 1 (BACE1) dephosphorylation and SUMOylation, resulting in enhanced enzyme activity and stability, which exacerbated the deposition of amyloid plaques. Conclusion: Our study demonstrates that long-term HFD consumption aggravates amyloid-β accumulation and cognitive impairments, and that modifiable lifestyle factors, such as obesity, can induce BACE1 post-modifications which may contribute to AD pathogenesis.


Author(s):  
Rizka Veni ◽  
Awal Prasetyo ◽  
Muflihatul Muniroh

This study aims to analyze the effect of combination of motor vehicle particular matter exposure and high-fat diet in kidney histopathology, creatinine levels, and MDA levels in Wistar rats. This study used a posttest-only control group design. Eighteen healthy male Wistar rats were divided into three groups. The intervention groups received motor vehicle fume exposure for 100 s with normal diet (X1) or high-fat diet (X2), and the control group received no exposure (C). Data analysis was processed with a SPSS 25.0 computer program by using the one-way ANOVA test followed by post hoc LSD. The degree of kidney histopathological damage showed significant differences between the X1 and X2 groups when compared with the control group (p < 0.05). The results of the creatinine level examination found a significant difference between the X2 and C groups (p < 0.05) and the treatment groups X1 and X2 (p < 0.05). The results of kidney MDA level examination showed a significant difference between the treatment groups (X1 and X2) and the control group (p < 0.05). The combination of particular matter of motor vehicle fumes exposure and high-fat diet could induce kidney damage through histopathological change and increased creatinine levels and kidney MDA levels in Wistar rats.


2018 ◽  
Vol 237 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Keerati Wanchai ◽  
Sakawdaurn Yasom ◽  
Wannipa Tunapong ◽  
Titikorn Chunchai ◽  
Parameth Thiennimitr ◽  
...  

Obesity is health issue worldwide, which can lead to kidney dysfunction. Prebiotics are non-digestible foods that have beneficial effects on health. This study aimed to investigate the effects of xylooligosaccharide (XOS) on renal function, renal organic anion transporter 3 (Oat3) and the mechanisms involved. High-fat diet was provided for 12 weeks in male Wistar rats. After that, the rats were divided into normal diet (ND); normal diet treated with XOS (NDX); high-fat diet (HF) and high-fat diet treated with XOS (HFX). XOS was given daily at a dose of 1000 mg for 12 weeks. At week 24, HF rats showed a significant increase in obesity and insulin resistance associated with podocyte injury, increased microalbuminuria, decreased creatinine clearance and impaired Oat3 function. These alterations were improved by XOS supplementation. Renal MDA level and the expression of AT1R, NOX4, p67phox, 4-HNE, phosphorylated PKCα and ERK1/2 were significantly decreased after XOS treatment. In addition, Nrf2-Keap1 pathway, SOD2 and GCLC expression as well as renal apoptosis were also significantly reduced by XOS. These data suggest that XOS could indirectly restore renal function and Oat3 function via the reduction of oxidative stress and apoptosis through the modulating of AT1R-PKCα-NOXs activation in obese insulin-resistant rats. These attenuations were instigated by the improvement of obesity, hyperlipidemia and insulin resistance.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Camila O. Souza ◽  
Alexandre A. S. Teixeira ◽  
Edson A. Lima ◽  
Helena A. P. Batatinha ◽  
Lara M. Gomes ◽  
...  

Palmitoleic acid (PMA) has anti-inflammatory and antidiabetic activities. Here we tested whether these effects of PMA on glucose homeostasis and liver inflammation, in mice fed with high-fat diet (HFD), are PPAR-αdependent. C57BL6 wild-type (WT) and PPAR-α-knockout (KO) mice fed with a standard diet (SD) or HFD for 12 weeks were treated after the 10th week with oleic acid (OLA, 300 mg/kg of b.w.) or PMA 300 mg/kg of b.w. Steatosis induced by HFD was associated with liver inflammation only in the KO mice, as shown by the increased hepatic levels of IL1-beta, IL-12, and TNF-α; however, the HFD increased the expression of TLR4 and decreased the expression of IL1-Ra in both genotypes. Treatment with palmitoleate markedly attenuated the insulin resistance induced by the HFD, increased glucose uptake and incorporation into muscle in vitro, reduced the serum levels of AST in WT mice, decreased the hepatic levels of IL1-beta and IL-12 in KO mice, reduced the expression of TLR-4 and increased the expression of IL-1Ra in WT mice, and reduced the phosphorylation of NF𝜅B (p65) in the livers of KO mice. We conclude that palmitoleate attenuates diet-induced insulin resistance, liver inflammation, and damage through mechanisms that do not depend on PPAR-α.


2021 ◽  
Author(s):  
Xiaojun Ma ◽  
Yujie Guo ◽  
Pengfei Li ◽  
Jingjing Xu ◽  
Shengqi Dong ◽  
...  

Abstract Background: Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are two prevalent diseases with comparable pathophysiological features and genetic predisposition. Polyunsaturated fatty acids (PUFAs) are essential in maintaining normal brain function. However, little is known about the impact of dietary n-6/n-3 PUFA ratio on AD-like pathology, especially in high-fat diet (HFD)-fed AD model mice. Methods: In the present study, the APP/PS1 mice were treated with 60% HFD for 3.5 months to induced insulin resistance. After that, 45% HFD with different n-6/n-3 PUFA ratios (n-6/n-3=1:1, 5:1 or 16:1) was applied for additional 3.5 months treatment. Following the dietary intervention, the behavior of mice was observed using the Water maze. Following behavioral testing, the animals were euthanized, and serum and tissue samples were collected for biochemical, histological and pathological analyses and evaluation. Cortical fatty acid profile was measured by gas chromatography. Western Blot and immunohistochemistry methods were used to detect protein expression of molecules related to AD pathology and insulin signaling pathway(s) in the brain sample tissues. Immunofluorescence assay was used to uncover the expression and migration of NF-κB in the cortex. qPCR method was applied to determine the gene expression of cortical pro-inflammatory cytokines.Results: HFD caused insulin resistance, increased serum IL-6 and TNF-α level, elevated cortical soluble Aβ1-40, Aβ1-42 content, and increased brain n-6/n-3 PUFAs ratio in APP/PS1 mice. Increased APP and BACE1 protein expression and p-IR/IR ratio, but decreased pro-inflammatory cytokines mRNA expression was observed in the cortex from 60% HFD-fed APP/PS1 mice. N-3 PUFAs rich diet (n-6/n-3=1:1) relieved insulin resistance and hyperlipidemia induced by 60% HFD. Cortical soluble Aβ1-40 and Aβ1-42 contents, the expression of cortical APP, GLUT3, insulin metabolism related molecules, and NF-κB pathway downstream pro-inflammatory cytokines showed a dietary n-6/n-3 PUFAs ratio-dependent way, indicating that dietary n-6/n-3 PUFA ratio plays a critical role in modifying the responses of serum inflammatory cytokine, AD pathology, cortical n-6/n-3 PUFAs ratio, insulin signaling and neuroinflammation to HFD treatment.Conclusion: Dietary n-6/n-3 PUFA ratio play an important role in modifying AD pathophysiology, insulin signaling pathway, and neuro-inflammation response to high fat diet treatment in brain.


Author(s):  
Cornelio Barrientos ◽  
Angélica Pérez ◽  
Jorge Vázquez

Hyperlipidemia due to a high-fat diet (HFD) is a risk factor for inducing insulin resistance (IR) and adverse effects onpancreatic β-cells in obesity and type 2 diabetes mellitus. This relationship may be due to activation of the hexosaminebiosynthesis pathway. Administration of exogenous glucosamine (GlcN) can increase the end product of this pathway(uridine-5′-diphosphate-N-acetyl-glucosamine), which can mediate IR and protein glycosylation. The objective of this study was to evaluate the effects of oral GlcN and HFD on IR and pancreatic histologic damage in a 22 wk study of 4 groups of male Wistar rats: control group with normal chow diet, HFD group (24%. g/g lard), GlcN group (500 mg/kg−1 per day of glucosamine hydrochloride in drinking water) and HFD plus oral GlcN. Metabolic variables related to IR that were measured included triglycerides (TG), free fatty acids (FFAs) and malondialdehyde (MDA). Histopathologic evaluation of the pancreas was also performed. The results showed IR in the HFD group, which had increased pancreatic nuclear pyknosis and vacuolization, with fatty infiltration and structural alteration of the islets of Langerhans. TG, FFAs and MDA were higher in serum and pancreatic tissue as compared with the control group. The GlcN group did not develop IR and had only mild nuclear pyknosis with no significant change in the pancreatic content of TG, FFAs and MDA. However, the combined administration of GlcN and HFD attenuated IR and improved TG, FFAs and MDA levels in serum and pancreatic tissue and the pancreatic histopathologic changes, with no significant differences as compared with the control group. These findings suggest that the oral GlcN at a dose of 500 mg/kg−1 is protective against IR and the pancreatic histologic damage caused by HFD.


Sign in / Sign up

Export Citation Format

Share Document