Face Recognition using Segmental Euclidean Distance

2011 ◽  
Vol 61 (5) ◽  
pp. 431 ◽  
Author(s):  
Farrukh Sayeed ◽  
Madasu Hanmandlu ◽  
Abdul Quaiyum Ansari

<p>In this paper an attempt has been made to detect the face using the combination of integral image along with the cascade structured classifier which is built using Adaboost learning algorithm. The detected faces are then passed through a filtering process for discarding the non face regions. They are individually split up into five segments consisting of forehead, eyes, nose, mouth and chin. Each segment is considered as a separate image and Eigenface also called principal component analysis (PCA) features of each segment is computed. The faces having a slight pose are also aligned for proper segmentation. The test image is also segmented similarly and its PCA features are found. The segmental Euclidean distance classifier is used for matching the test image with the stored one. The success rate comes out to be 88 per cent on the CG(full) database created from the databases of California Institute and Georgia Institute. However the performance of this approach on ORL(full) database with the same features is only 70 per cent. For the sake of comparison, DCT(full) and fuzzy features are tried on CG and ORL databases but using a well known classifier, support vector machine (SVM). Results of recognition rate with DCT features on SVM classifier are increased by 3 per cent over those due to PCA features and Euclidean distance classifier on the CG database. The results of recognition are improved to 96 per cent with fuzzy features on ORL database with SVM.</p><p><strong>Defence Science Journal, 2011, 61(5), pp.431-442</strong><strong><strong>, DOI:http://dx.doi.org/10.14429/dsj.61.1178</strong></strong></p>

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ujwalla Gawande ◽  
Mukesh Zaveri ◽  
Avichal Kapur

Recent times witnessed many advancements in the field of biometric and ultimodal biometric fields. This is typically observed in the area, of security, privacy, and forensics. Even for the best of unimodal biometric systems, it is often not possible to achieve a higher recognition rate. Multimodal biometric systems overcome various limitations of unimodal biometric systems, such as nonuniversality, lower false acceptance, and higher genuine acceptance rates. More reliable recognition performance is achievable as multiple pieces of evidence of the same identity are available. The work presented in this paper is focused on multimodal biometric system using fingerprint and iris. Distinct textual features of the iris and fingerprint are extracted using the Haar wavelet-based technique. A novel feature level fusion algorithm is developed to combine these unimodal features using the Mahalanobis distance technique. A support-vector-machine-based learning algorithm is used to train the system using the feature extracted. The performance of the proposed algorithms is validated and compared with other algorithms using the CASIA iris database and real fingerprint database. From the simulation results, it is evident that our algorithm has higher recognition rate and very less false rejection rate compared to existing approaches.


2021 ◽  
Vol 36 (1) ◽  
pp. 721-726
Author(s):  
S. Mahesh ◽  
Dr.G. Ramkumar

Aim: Machine learning algorithm plays a vital role in various biometric applications due to its admirable result in detection, recognition and classification. The main objective of this work is to perform comparative analysis on two different machine learning algorithms to recognize the person from low resolution images with high accuracy. Materials & Methods: AlexNet Convolutional Neural Network (ACNN) and Support Vector Machine (SVM) classifiers are implemented to recognize the face in a low resolution image dataset with 20 samples each. Results: Simulation result shows that ACNN achieves a significant recognition rate with 98% accuracy over SVM (89%). Attained significant accuracy ratio (p=0.002) in SPSS statistical analysis as well. Conclusion: For the considered low resolution images ACNN classifier provides better accuracy than SVM Classifier.


2012 ◽  
Vol 235 ◽  
pp. 74-78 ◽  
Author(s):  
Jia Jun Zhang ◽  
Li Juan Liang

The background noise influences the face image recognition greatly. It is crucial to remove the noise signals prior to the face image recognition processing. For this purpose, the wavelet de-noising technology has combined with the kernel principal component analysis (KPCA) to identify face images in this paper. The wavelet de-noising technology was firstly used to remove the noise signals. Then the KPCA was employed to extract useful principal components for the face image recognition. By doing so, the dimensionality of the feature space can be reduced effectively and hence the performance of the face image recognition can be enhanced. Lastly, a support vector machine (SVM) classifier was used to recognize the face images. Experimental tests have been conducted to validate and evaluate the proposed method for the face image recognition. The analysis results have showed high performance of the newly proposed method for face image identification.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xinning Li ◽  
Hu Wu ◽  
Xianhai Yang ◽  
Peng Xue ◽  
Shuai Tan

In order to better realize the orchard intelligent mechanization and reduce the labour intensity of workers, the study of intelligent fruit boxes handling robot is necessary. The first condition to realize intelligence is the fruit boxes recognition, which is the research content of this paper. The method of multiview two-dimensional (2D) recognition was adopted. A multiview dataset for fruits boxes was built. For the sake of the structure of the original image, the model of binary multiview 2D kernel principal component analysis network (BM2DKPCANet) was established to reduce the data redundancy and increase the correlation between the views. The method of multiview recognition for the fruits boxes was proposed combining BM2DKPCANet with the support vector machine (SVM) classifier. The performance was verified by comparing with principal component analysis network (PCANet), 2D principal component analysis network (2DPCANet), kernel principal component analysis network (KPCANet), and binary multiview kernel principal component analysis network (BMKPCANet) in terms of recognition rate and time consumption. The experimental results show that the recognition rate of the method is 11.84% higher than the mean value of PCANet though it needs more time. Compared with the mean value of KPCANet, the recognition rate exceeded 2.485%, and the time saved was 24.5%. The model can meet the requirements of fruits boxes handling robot.


2021 ◽  
Vol 11 (13) ◽  
pp. 5895
Author(s):  
Kristina Serec ◽  
Sanja Dolanski Babić

The double-stranded B-form and A-form have long been considered the two most important native forms of DNA, each with its own distinct biological roles and hence the focus of many areas of study, from cellular functions to cancer diagnostics and drug treatment. Due to the heterogeneity and sensitivity of the secondary structure of DNA, there is a need for tools capable of a rapid and reliable quantification of DNA conformation in diverse environments. In this work, the second paper in the series that addresses conformational transitions in DNA thin films utilizing FTIR spectroscopy, we exploit popular chemometric methods: the principal component analysis (PCA), support vector machine (SVM) learning algorithm, and principal component regression (PCR), in order to quantify and categorize DNA conformation in thin films of different hydrated states. By complementing FTIR technique with multivariate statistical methods, we demonstrate the ability of our sample preparation and automated spectral analysis protocol to rapidly and efficiently determine conformation in DNA thin films based on the vibrational signatures in the 1800–935 cm−1 range. Furthermore, we assess the impact of small hydration-related changes in FTIR spectra on automated DNA conformation detection and how to avoid discrepancies by careful sampling.


Author(s):  
Qingmi Yang

The parameter optimization of Support Vector Machine (SVM) has been a hot research direction. To improve the optimization rate and classification performance of SVM, the Principal Component Analysis (PCA) - Particle Swarm Optimization (PSO) algorithm was used to optimize the penalty parameters and kernel parameters of SVM. PSO which is to find the optimal solution through continuous iteration combined with PCA that eliminates linear redundancy between data, effectively enhance the generalization ability of the model, reduce the optimization time of parameters, and improve the recognition accuracy. The simulation comparison experiments on 6 UCI datasets illustrate that the excellent performance of the PCA-PSO-SVM model. The results show that the proposed algorithm has higher recognition accuracy and better recognition rate than simple PSO algorithm in the parameter optimization of SVM. It is an effective parameter optimization method.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


2014 ◽  
Vol 543-547 ◽  
pp. 2350-2353
Author(s):  
Xiao Yan Wan

In order to extract the expression features of critically ill patients, and realize the computer intelligent nursing, an improved facial expression recognition method is proposed based on the of active appearance model, the support vector machine (SVM) for facial expression recognition is taken in research, and the face recognition model structure active appearance model is designed, and the attribute reduction algorithm of rough set affine transformation theory is introduced, and the invalid and redundant feature points are removed. The critically ill patient expressions are classified and recognized based on the support vector machine (SVM). The face image attitudes are adjusted, and the self-adaptive performance of facial expression recognition for the critical patient attitudes is improved. New method overcomes the effect of patient attitude to the recognition rate to a certain extent. The highest average recognition rate can be increased about 7%. The intelligent monitoring and nursing care of critically ill patients are realized with the computer vision effect. The nursing quality is enhanced, and it ensures the timely treatment of rescue.


2021 ◽  
pp. 6787-6794
Author(s):  
Anisha Rebinth, Dr. S. Mohan Kumar

An automated Computer Aided Diagnosis (CAD) system for glaucoma diagnosis using fundus images is developed. The various glaucoma image classification schemes using the supervised and unsupervised learning approaches are reviewed. The research paper involves three stages of glaucoma disease diagnosis. First, the pre-processing stage the texture features of the fundus image is recorded with a two-dimensional Gabor filter at various sizes and orientations. The image features are generated using higher order statistical characteristics, and then Principal Component Analysis (PCA) is used to select and reduce the dimension of the image features. For the performance study, the Gabor filter based features are extracted from the RIM-ONE and HRF database images, and then Support Vector Machine (SVM) classifier is used for classification. Final stage utilizes the SVM classifier with the Radial Basis Function (RBF) kernel learning technique for the efficient classification of glaucoma disease with accuracy 90%.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


Sign in / Sign up

Export Citation Format

Share Document