Impact Sensitivity of RDX and Viton Compositions Prepared by Co-precipitation Method

2015 ◽  
Vol 65 (4) ◽  
pp. 287 ◽  
Author(s):  
P. B. Wagh ◽  
S. V. Ingale ◽  
Ratanesh Kumar ◽  
R.H. Naina ◽  
T. C. Kaushik ◽  
...  

<p>Desensitisation of explosive materials using polymers is an important area in safe utilisation of explosives in various applications. The RDX/viton composition has been developed using co-precipitation method with varying content of viton, ranging from 5 to 35 wt per cent. RDX and viton were dissolved in acetone which is a common solvent for RDX and viton, and then the acetone was extracted from the solution by distillation resulting in homogeneous RDX/viton composition. Infrared spectroscopy studies indicated presence of RDX and viton in the resulting compositions. Thermogravimetric and differential thermal analysis studies made on yielded compositions confirmed that RDX is present in the composition in desired content. The shift in exotherm of RDX/viton composition as compared to RDX showed that polymer-bonded RDX compositions are more stable. The impact sensitivity studies showed that sensitivity of RDX/viton composition decreased with increasing content of viton. The similar trend was observed for friction sensitivity. The co-precipitation method has been found to be advantages to obtain homogeneous composition of RDX and viton (with viton content up to 25 wt per cent) as revealed by linear trend in sensitivity data measurements. It has been demonstrated that the sensitivity of RDX can be tailored within a wide range using viton so as to suit in desired applications.</p><p><strong>Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 287-291, DOI: http://dx.doi.org/10.14429/dsj.65.8647</strong></p>

2015 ◽  
Vol 1094 ◽  
pp. 15-19
Author(s):  
Lin Xia Yan ◽  
Sen Lin Tian ◽  
Qiu Lin Zhang

Cu-Al catalysts were synthesized by the co-precipitation method to study hydrolysis of hydrogen cyanide. During the synthesis, the impact of Cu/Al molar ratio, pH value and calcination temperature was investigated and the best synthesis condition was found. The results indicate that the remove of hydrogen cyanide first increases and then decreases with increasing Cu/Al molar ratio, pH value and calcination temperature, which reaches the maxima and remains above 95% at 360 min when Cu/Al molar ratio is 2:1, pH value is approximately 8.0 and calcination temperature is 400°C around. The analysis of X-ray diffraction (XRD) shows that Cu content is the main influence factor at Cu/Al molar ratio below 2:1 whereas crystallinity of catalysts is the key factor at Cu/Al molar ratio above 2:1.


2017 ◽  
Vol 888 ◽  
pp. 333-337 ◽  
Author(s):  
Nadira Kamarudin ◽  
Wan Saffiey Wan Abdullah ◽  
Muhammad Azmi Abdul Hamid

This paper presents the luminescence properties of dysprosium (Dy) doped calcium sulfate (CaSO4) phosphor material produced by co-precipitation technique with 0.1 - 0.5 mol% concentration of dopant. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectrum shows high purity anhydrite CaSO4 phosphor material produced. The average crystallite size of 74 nm with orthorhombic crystal system was obtained. The luminescence behavior of produced CaSO4: Dy was studied using a photoluminescence (PL) spectrometer. The excitation and emission spectrum peaks associated with defects and vacancies of the phosphor material at claimed crystalline phase. The mixed peaks of excitation and emission that corresponds to micro and nano sized particle was shown for the produced powders. These properties show that the produced powders have wide range of luminescence detection with many electron traps ready for thermoluminescence (TL) information storage.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6718
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Sulalit Bandyopadhyay ◽  
Mona Wetrhus Minde

In recent years, several studies have indicated the impact of nanoparticles (NPs) on various properties (such as viscosity and fluid loss) of conventional drilling fluids. Our previous study with commercial iron oxide NPs indicated the potential of using NPs to improve the properties of a laboratory bentonite-based drilling fluid without barite. In the present work, iron oxide NPs have been synthesized using the co-precipitation method. The effect of these hydrophilic NPs has been evaluated in bentonite and KCl-based drilling fluids. Rheological properties at different temperatures, viscoelastic properties, lubricity, and filtrate loss were measured to study the effect of NPs on the base fluid. Also, elemental analysis of the filtrate and microscale analysis of the filter cake was performed. Results for bentonite-based fluid showed that 0.019 wt% (0.1 g) of NPs reduced the coefficient of friction by 47%, and 0.0095 wt% (0.05 g) of NPs reduced the fluid loss by 20%. Moreover, for KCl-based fluids, 0.019 wt% (0.1 g) of additive reduced the coefficient of friction by 45%, while higher concentration of 0.038 wt% (0.2 g) of NPs shows 14% reduction in the filtrate loss. Microscale analysis shows that presence of NPs in the cake structure produces a more compact and less porous structure. This study indicates that very small concentration of NPs can provide better performance for the drilling fluids. Additionally, results from this work indicate the ability of NPs to fine-tune the properties of drilling fluids.


Titanium dioxide (TiO2 ) nanoparticles were synthesized using three different approaches successfully. These approaches were adopted as per different applications of TiO2 nanoparticles. These samples were characterized using X- ray diffraction (XRD) technique. XRD revealed nanocrystalline regime of TiO2 nanoparticles in each approach. The calculated size of nanoparticle was less than 11 nm in the used chemical approaches. Prominent and broad peaks were observed in XRD pattern for all samples, which showed all samples were in nanocrytalline form. The particle size was calculated for first three most intense prominent XRD peaks. By adopting sol gel method using Titanium tetra isopropoxide (TTIP) as precursor, the synthesized Titania particles were pure anatas and of size 7 to 11nm and using co-precipitation method using TiCl3 as precursor synthesized Titania were pure rutile and of size 3 to 7 nm. The co-precipitation method has been best suited for getting smaller nanoparticles. It was also observed that Solid state mechanical reduction root can be used to reduce the size of Titania micro-particles up to about 60 nm but phase of nanoparticles remains same as starting microparticles. It has been seen that the material properties of TiO2 can be tuned by proper method of synthesis. The work may play important role to choose particular synthesis method for specific application. These nano synthesized TiO2 materials may be used in a wide range of applications such as dye sensitized solar cell, photocatalysis, antibacterial, environment pollutant removal and photoactivated self cleaning properties etc


2020 ◽  
Author(s):  
Sudarshana Dhanarath Mardolkar ◽  
A. V. Salker

Abstract A series of pristine and nickel doped copper tellurates possessing a wide range of applications are studied here. Use of a simple wet chemical route that is co-precipitation method has been employed for the first time, which involves the formation of desired compounds at a relatively lower temperature, thus modifying their properties. All the prepared compounds are characterized and investigated by XRD, TG – DTA, XPS, SEM, TEM to examine their phase purity, thermal stability, chemical state, and microstructural properties. The electrical resistivity studies showed an insulator - semiconductor transition behavior. Magnetic studies revealed the paramagnetic nature of the material. Antiferromagnetic to paramagnetic transition was observed at T N ~ 60 K in case of Cu 2.7 Ni 0.3 TeO 6 sample. Thermoelectric studies indicated a change in conduction mechanism with temperature. Dielectric properties with respect to frequency showed an increase in dielectric parameters with increasing dopant content. Photoluminescence property has been studied and found to show emission in the visible region.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 133
Author(s):  
Weiqiang Pang ◽  
Chongqing Deng ◽  
Huan Li ◽  
Luigi T. DeLuca ◽  
Dihua Ouyang ◽  
...  

As a hot research topic, nano-scale energetic materials have recently attracted much attention in the fields of propellants and explosives. The preparation of different types of nano-sized energetic materials were carried out, and the effects of nano-sized energetic materials (nEMs) on the properties of solid propellants and explosives were investigated and compared with those of micro-sized ones, placing emphasis on the investigation of the hazardous properties, which could be useable for solid rocket nozzle motor applications. It was found that the nano-sized energetic materials can decrease the impact sensitivity and friction sensitivity of solid propellants and explosives compared with the corresponding micro-sized ones, and the mechanical sensitivities are lower than that of micro-sized particles formulation. Seventy-nine references were enclosed.


1996 ◽  
Vol 459 ◽  
Author(s):  
A. Ratna Phani ◽  
M. Pelino

ABSTRACTThe present investigation deals with the electrical response of noble metal doped SnO2 to improve the selectivity for Liquid Petroleum Gas (LPG) in the presence of CO and CH4. Addition of small amounts of nobel metals (Pd, Pt and Rh) to the base material SnO2 is carried out by co-precipitation method. X-ray diffraction and X-ray photoelectron spectroscopy studies are carried out to find out the crystalline phase and chemical composition of the SnO2. The sensor element has been tested for cross selectivity to reducing gases by measuring sensitivity versus sintering temperatures and sensitivity versus operating temperatures. The sensor elements with the composition of Pd (1.5 wt%) andPt (1.5 wt%) in the base material SnO2 sintered at 800°C showed high sensitivity towards LPG at an operating temperature of 350°C suggestingthe possibility to utilize the sensor for the detection of LPG.


2012 ◽  
Vol 424-425 ◽  
pp. 1057-1061
Author(s):  
Wei Wang ◽  
Tie Long Li ◽  
Ying Liu

In this work, Fe3O4 magnetic nanoparticles with high peroxidase-like catalytic activity and spontaneous pH adjustment ability were successfully prepared by co-precipitation method followed by appropriate thermal treatment. Key synthesis factors were identified and adjusted to tailor the crystallinity, chemical composition and then catalytic property. The crystal structure and Fe (II) content of the catalyst strongly affected its degradation efficiency. Phenol was completely removed by the optimal magnetic nanoparticles under a wide range of pH from 3.0 to 8.0. Additionally, this catalyst exhibited low iron leaching, good reusability and excellent potential to eliminate various organic pollutants from waste water. The reaction mechanism was discussed in terms of the formation of HO• and O2•−/HO2• radicals.


2015 ◽  
Vol 1112 ◽  
pp. 66-70 ◽  
Author(s):  
Robert Mahendra ◽  
Mariesta Arianti ◽  
Dyah Sawitri ◽  
Doty Dewi Risanti

ZnO, with direct wide band gap of 3.37 eV and high excitonic binding energy of 60 meV has been attracting much attention due to its wide range of applications, for transparent electronics, solar cells, and other optoelectronics device. We present a simple, single step process to produce ZnO nanotrees using co-precipitation method. As a precursor, zinc nitrate dehydrate was stabilized by hexamethylene tetraamine (HMTA) and 3-9 mM polyethylene glycol (PEG) was added at 180°C for 3-6 hours followed by residual polymer removal. Scanning Electron Microscopy revealed the typical rod-like branched nanostructures were achieved. For longer annealing time the PEG-assisted growth process indeed exhibited a distinctive c-direction inhibition responsible for the lateral growth and subsequent branching of ZnO, in which the branch growth in sample with PEG amount of 0.05 g is the slowest. Some amounts of PEG up to 0.03 g are sensitive to affect several parameters, such as, lattice stress, unit cell volume, density of film and dislocation density.


2015 ◽  
Vol 1109 ◽  
pp. 191-194 ◽  
Author(s):  
Mohammad Ziaul Karim ◽  
Md. Eaqub Ali ◽  
Sharifah Bee Abd Hamid

Over the past few decades, magnetite nanoparticle has been profusely because of their wide range of applications. The co-precipitation method is the simplest and suitable method for the preparation of this nanoparticle. It goes through several reaction steps for the formation of various phases of magnetic nanoparticles. Goethite (FeO(OH)), is one of the intermediates, and it drastically suppressed with the magnetic properties of the Fe oxide phase. In our study, it was shown that at 30°C temperature pure magnetic nanoparticles is formed. But when precipitation temperature is increase to 80°C, goethite is also present with the magnetite nanoparticle. Hence, it is deduced that precipitation temperature plays a significant role in accelerating goethite phase formation when synthesising magnetite nanoparticle by this precipitation method. Data obtained from Raman spectroscopy and XRD supported the above observation.


Sign in / Sign up

Export Citation Format

Share Document