scholarly journals Crack Tip Radius Effect on Fatigue Crack Growth and Near Tip Fields in Plastically Compressible Materials

2021 ◽  
Vol 71 (2) ◽  
pp. 248-255
Author(s):  
S. Singh ◽  
D. Khan

Motivated by the prospective uses of plastically compressible materials such as, metallic and polymeric foams, transformation toughened ceramics, toughened structural polymers etc., the present authors investigate the crack-tip radius effect on fatigue crack growth (FCG) of a mode I crack and near-tip stress-strain fields in such plastically compressible solids. These plastically compressible materials have been characterised by elastic-viscoplastic constitutive equations. Simulations are conducted for plane strain geometry with two different hardness functions: one is bilinear hardening and the other one is hardening-softening-hardening. It has been observed that plastic compressibility as well as strain softening lead to significant deviation in the amount of crack growth. It has further been revealed that the nature of FCG is appreciably affected by initial crack-tip radius. Even though it may look from outside that the increase in tip radius will lead to decrease in FCG, but the nature of FCG variation with respect to tip radius is found to be a combined effect of tip radius, plastic compressibility and work or strain softening etc.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


Author(s):  
Yuji Ozawa ◽  
Tatsuya Ishikawa ◽  
Yoichi Takeda

In order to clarify the mechanism of fatigue crack growth in alloy 625, which is a candidate material for use in advanced ultra supercritical power plants, the crack tip damage zone formation after a crack growth test conducted in high temperature steam was investigated. It was observed that the oxide thickness at the crack tip tended to increase with decreasing cyclic loading frequency. The crack path was a mix of transgranular and intergranular fractures. According to the grain reference orientation deviation (GROD) maps, it was revealed that the density of geometrically necessary dislocations (GNDs) in the matrix along the crack path and ahead of crack tip increased with an increase in the fatigue crack growth rate (FCGR) due to environmental effects. It was observed that (1) mobile dislocations at the crack surface were blocked due to the thick oxide layer, resulting in an increase in the density of GNDs, and (2) an increase in the density of GNDs might induce stress concentration at the crack tip, deformation twinning, and the acceleration of FCGRs.


CORROSION ◽  
10.5006/2896 ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 312-323
Author(s):  
Ramgopal Thodla ◽  
Feng Gui ◽  
Colum Holtam

Fatigue crack growth rate of line pipe steels in sour environments typically exhibits a steady-state value at low frequencies. However, in highly inhibited sour environments, there is no evidence of a steady-state fatigue crack growth at low frequencies. This is likely a result of static crack growth rate at Kmax. Stable static crack growth measured under constant stress intensity factor (K) conditions in inhibited sour environments was in the range of 10−7 mm/s to 10−8 mm/s. The crack growth rate in inhibited sour environments is likely associated with crack tip processes associated with metal dissolution/film formation and associated hydrogen evolution. The results obtained were modeled based on a crack tip strain rate based approach, where the rate limiting step was the metal dissolution/FeS formation and the corresponding hydrogen generation reaction.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5544
Author(s):  
Micael F. Borges ◽  
Diogo M. Neto ◽  
Fernando V. Antunes

Fatigue crack growth (FCG) has been studied for decades; however, several aspects are still objects of controversy. The objective here is to discuss different issues, using a numerical approach based on crack tip plastic strain, assuming that FCG is driven by crack tip deformation. ΔK was found to control cyclic plastic deformation at the crack tip, while Kmax has no effect. Therefore, alternative mechanisms are required to justify models based on ΔK and Kmax. The analysis of crack tip plastic deformation also showed that there is crack tip damage below crack closure. Therefore, the definition of an effective load range ΔKeff = Kmax − Kopen is not correct, because the portion of load range below opening also contributes to FCG. Below crack closure, damage occurs during unloading while during loading the crack tip deformation is elastic. However, if the maximum load is decreased below the elastic limit, which corresponds to the transition between elastic and elasto–plastic regimes, there is no crack tip damage. Additionally, a significant effect of the crack ligament on crack closure was found in tests with different crack lengths and the same ΔK. Finally, the analysis of FCG after an overload with and without contact of crack flanks showed that the typical variation of da/dN observed is linked to crack closure variations, while the residual stresses ahead of crack tip are not affected by the contact of crack flanks.


2006 ◽  
Vol 324-325 ◽  
pp. 251-254 ◽  
Author(s):  
Tai Quan Zhou ◽  
Tommy Hung Tin Chan ◽  
Yuan Hua

The behavior of crack growth with a view to fatigue damage accumulation on the tip of cracks is discussed. Fatigue life of welded components with initial crack in bridges under traffic loading is investigated. The study is presented in two parts. Firstly, a new model of fatigue crack growth for welded bridge member under traffic loading is presented. And the calculate method of the stress intensity factor necessary for evaluation of the fatigue life of welded bridge members with cracks is discussed. Based on the concept of continuum damage accumulated on the tip of fatigue cracks, the fatigue damage law suitable for steel bridge member under traffic loading is modified to consider the crack growth. The proposed fatigue crack growth can describe the relationship between the cracking count rate and the effective stress intensity factor. The proposed fatigue crack growth model is then applied to calculate the crack growth and the fatigue life of two types of welded components with fatigue experimental results. The stress intensity factors are modified by the factor of geometric shape for the welded components in order to reflect the influence of the welding type and geometry on the stress intensity factor. The calculated and measured fatigue lives are generally in good agreement, at some of the initial conditions of cracking, for a welded component widely used in steel bridges.


Sign in / Sign up

Export Citation Format

Share Document