scholarly journals Evolution of Resistance in Potamopyrgus antipodarum

2015 ◽  
Vol 1 (1) ◽  
pp. 35
Author(s):  
Peyton J. Joachim

Host-parasite interactions are believed to exert strong selection in natural communities. Most notably, parasites should select for increased resistance in hosts, while hosts should select for increased infectivity in parasites (Koskella & Lively, 2007; Koskella, Vergara, & Lively, 2011; Lohse, Guiterrez, & Kaltz, 2006). Under this coevolutionary process, can host populations evolve resistance to their rapidly evolving parasite populations? This experiment was designed to determine if hosts rapidly adapt to resist parasites that are themselves under selection to infect their hosts. The New Zealand freshwater snail, Potamopyrgus antipodarum, is naturally infected by the trematode Microphallus. Microphallus is a castrating parasite and is thus likely to impose strong selection on its snail host (Hechinger, 2012). Snails and parasites were collected from a natural lake in summer 2013. These hosts constitute the parental generation of the experiment: they were either exposed to parasite eggs (Exposed) or not exposed (Control). Parental snails matured and reproduced over the course of a year. Their offspring were then exposed to parasites collected from the same lake in summer 2014. These parasites would have had one to a few additional generations of evolution relative to 2013 parasites. After parasite development (~3 months), the offspring were dissected to determine infection status and thereby their resistance to infection. The offspring of Control parents had a significantly higher mean infection rate (35%: less resistant) than the offspring of Exposed parents (30%: more resistant). This result indicates that increased resistance to parasitism evolved in a single host generation. Our finding provides evidence that a host population can rapidly evolve resistance to a parasite population that is itself rapidly co-evolving to infect its host. We predict that the evolution of host resistance would be far greater after multiple generations of parasite selection, and this could be the subject of future study. 

2021 ◽  
Author(s):  
Estefanía Calvo Alvarez ◽  
Aline Crouzols ◽  
Brice Rotureau

The African trypanosome flagellum is essential in multiple aspects of the parasite development. In the mammalian infective form of this protist, FLAgellar Member 8 (FLAM8) is a large protein distributed along the entire flagellum that is suspected to be involved in host-parasite interactions. Analyses of knockdown and knockout trypanosomes demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and slender to stumpy differentiation. Functional investigations in experimental infections showed that FLAM8 -deprived trypanosomes are able to establish and maintain the infection in the blood circulation, and to differentiate into transmissible stumpy forms. However, bioluminescence imaging revealed that FLAM8 -null parasites exhibit an impaired dissemination in the extravascular compartment, especially in the skin, that is partially restored by the addition of a single rescue copy of FLAM8 . To our knowledge, FLAM8 is the first example of a flagellar protein that modulates T. brucei parasite distribution in the host tissues, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches.


Parasitology ◽  
2001 ◽  
Vol 123 (7) ◽  
pp. 143-157 ◽  
Author(s):  
T. P. YOSHINO ◽  
J. P. BOYLE ◽  
J. E. HUMPHRIES

Although the effects of trematode infection on snail host physiology or host responses on parasite development have been well described in the literature, very little is known regarding the underlying mechanisms and specific molecules responsible for mediating those effects. It is presumed that many host–parasite interactions are communicated through receptor-mediated events, in particular those involving haemocytic immune responses to invading parasites, larval motility and migration through host tissues, and larval acquisition of host molecules either as nutrients or critical developmental factors. The intent of this chapter is to review current knowledge of molecules (both receptors and their ligands or counter-receptors) involved in molecular communication at the interface between larval trematodes, especially the mother or primary sporocyst stage, and host cells/tissues in intimate proximity to developing larvae. Information to date suggests that the molecular exchange at this interface is a highly complex and dynamic process, and appears to be regulated in specific cases. Topics discussed will focus on snail cell receptor interactions with the sporocyst tegument and its secretions, host cell–cell and cell–substrate adhesion receptors and their related signal transduction pathways, and sporocyst tegumental surface receptors and ligands involved in the binding of soluble host molecules.


2021 ◽  
Author(s):  
Ao Yu ◽  
Jonathan Trevor Vannatta ◽  
Stephanie O Gutierrez ◽  
Dennis J Minchella

Seawater intrusion caused by anthropogenic climate change may affect freshwater species and their parasites. While brackish water certainly impacts freshwater systems globally, its impact on disease transmission is largely unknown. This study examined the effect of artificial seawater on host-parasite interactions using a freshwater snail host, Biomphalaria alexandrina, and the human trematode parasite Schistosoma mansoni. Four components were analyzed to evaluate the impact of increasing salinity on disease transmission: snail survival, snail reproduction, infection prevalence, and the survival of the parasite infective stage (cercariae). We found a decrease in snail survival, snail egg mass production, and snail infection prevalence as salinity increases. However, cercarial survival peaked at an intermediate salinity value. Our results suggest that seawater intrusion into freshwaters has the potential to decrease schistosome transmission to humans.


2019 ◽  
Vol 286 (1897) ◽  
pp. 20190049 ◽  
Author(s):  
Sabrina M. McNew ◽  
Sarah A. Knutie ◽  
Graham B. Goodman ◽  
Angela Theodosopoulos ◽  
Ashley Saulsberry ◽  
...  

When confronted with a parasite or pathogen, hosts can defend themselves by resisting or tolerating the attack. While resistance can be diminished when resources are limited, it is unclear how robust tolerance is to changes in environmental conditions. Here, we investigate the sensitivity of tolerance in a single host population living in a highly variable environment. We manipulated the abundance of an invasive parasitic fly, Philornis downsi , in nests of Galápagos mockingbirds ( Mimus parvulus ) over four field seasons and measured host fitness in response to parasitism. Mockingbird tolerance to P. downsi varied significantly among years and decreased when rainfall was limited. Video observations indicate that parental provisioning of nestlings appears key to tolerance: in drought years, mockingbirds likely do not have sufficient resources to compensate for the effects of P. downsi . These results indicate that host tolerance is a labile trait and suggest that environmental variation plays a major role in mediating the consequences of host–parasite interactions.


Parasitology ◽  
1984 ◽  
Vol 89 (1) ◽  
pp. 195-208 ◽  
Author(s):  
H. I. McCallum ◽  
R. M. Anderson

SummarySimple mathematical models are developed to examine the influence of variability in host susceptibility to infection, on the dynamics of host–parasite population interactions. When hosts differ in their innate susceptibility (at birth), to infection by a specific parasite, the average susceptibility of the host population as a whole may show systematic changes through time. Such patterns may arise as a result of demographic factors associated with the interaction between host and parasite populations, in the absence of inheritance mechanisms (a genetic component) or acquired resistance (an immunological component). The general significance of this observation is discussed in terms of the coevolution of host–parasite associations.


Parasitology ◽  
1977 ◽  
Vol 75 (3) ◽  
pp. 259-276 ◽  
Author(s):  
Robert M. May

SummaryAlthough superseded by more recent and biologically realistic studies, Crofton's (1971b) model of host–parasite associations remains of interest as the simplest model which captures the essentials. Even if its simplifying assumptions are all accepted, Crofton's model has two defects: the first is that its general conclusions are drawn from numerical simulations for a very restricted range of parameter values; the second is that the probability for a parasite transmission stage to succeed in establishing itself in a host is not constrained to be less than unity, as biologically it must be. The present paper remedies these two defects, by giving analytical results valid for all values of the parameters, and by demanding that the parasite transmission factor indeed saturates to unity. Some of Crofton's conclusions remain intact, others are significantly altered.(1) Crofton (1971b) has presented a mathematical model which aims to exhibit some of the essential dynamical properties of host–parasite associations. The extreme biological simplicity of this model (e.g. hosts and parasites have the same generation time) makes it applicable to few real systems, and later models (Anderson & May, 1977; May & Anderson, 1977) have added many more general biological features in an effort to makecontact with empirical data. Nevertheless, Crofton's model retains pedagogical value as the basic model.(2) Even within its own framework ofsimple assumptions, Crofton's model has two defects. The first is thatthe general conclusions about its dynamical behaviour are drawn from numerical stimulations for a re stricted, and not necessarily representative, range of parametervalues. The second is that the factor describingthe input of parasite transmission stages into the next generation of hostsdoes not saturate to unity, as its biological definition implies it must. Thepresent paper gives an analytical account of the dynamical behaviour of Crofton's model, valid for all values of the relevant biological parameters, and with a parasite trans mission factor that does saturate to unity. The ensuing conclusions are in several respects significantly differentfrom Crofton's(3) The intrinsic growth rates of the host and parasite populations are defined as λ and A; the negative binomial parameter k measures the overdispersion of parasites among hosts (small k corresponds to high overdispersion); and L characterizes thelethal level of parasites per host.Then unless λ1+1/k λ A exp (– 1[L) no equilibrium state is possible, andthe host population undergoes Malthusiangrowth that the parasites cannot check. This inequality tends to be satisfied if k is not too small, λ not too large, and A significantly larger than λ: see Figs 1, 2, and 4.This aspect of the model derives from the saturation of the parasite transmission factor, and is omitted fro Crofton's discussion.(4) When an equilibrium does exist, the following observations can be made. The equilibrium host population H* is given by eq. (15): it de creases with increasing A; increases with increasing λ; is roughly inde pendent of L; and increases with increasing parasite overdispersion for small k (k < In λ);, while being roughly independent of k for larger k. Theequilibrium number of parasites per host m* is given by eq. (9): it is independent of A; increases roughly linearly with L; increases with increasing overdispersion or λ for small k (k < in λ); and increases slowly with λ, and is roughly independent of k, for larger k. The totalpopulation of parasites at equilibrium is given by P* = H*m*.(5) The stability of the equilibrium, i.e. its ability to recover from disturbance, depends mainly on λ and on k, as illustrated in Fig. 4. Except for values of λ and k perilously close to the boundary where no equili brium is possible, the disturbed host and parasite populations will return to their equilibrium values by undergoing damped oscillations. The damping will tend to be weak if k is large, or if λ is small.(6) These conclusions accord with those derived from more detailed and realistic host–parasite models.(7) The general process, whereby thehost–parasite association can be stabilized by overdispersion of parasites, is dynamically similar to that whereby prey–predator or host–parasitoid associationscan be stabilized by differential aggregation of predators or by explicit refuges for the prey.


Parasitology ◽  
2017 ◽  
Vol 145 (6) ◽  
pp. 762-769 ◽  
Author(s):  
Nina Hafer

AbstractHost manipulation whereby a parasite increases its transmission to a subsequent host by altering the behaviour of its current host is very far spread. It also occurs in host–parasite systems that are widely distributed. This offers the potential for local adaptation. The tapeworm Schistocephalus solidus modifies its first intermediate copepod host's predation susceptibility to suit its own needs by reducing its activity before it becomes infective and increasing it thereafter. To investigate potential differences in host manipulation between different populations and test for potential local adaptation with regard to host manipulation, I experimentally infected hosts from two distinct populations with parasites from either population in a fully crossed design. Host manipulation differed between populations mostly once the parasite had reached infectivity. These differences in infective parasites were mostly due to differences between different parasite populations. In not yet infective parasites, however, host population also had a significant effect on host manipulation. There was no evidence of local adaptation; parasites were able to manipulate foreign and local hosts equally well. Likewise, hosts were equally poor at resisting host manipulation by local and foreign parasites.


2020 ◽  
Vol 94 ◽  
Author(s):  
J. Schwelm ◽  
O. Kudlai ◽  
N.J. Smit ◽  
C. Selbach ◽  
B. Sures

Abstract Bithynids snails are a widespread group of molluscs in European freshwater systems. However, not much information is available on trematode communities from molluscs of this family. Here, we investigate the trematode diversity of Bithynia tentaculata, based on molecular and morphological data. A total of 682 snails from the rivers Lippe and Rhine in North Rhine-Westphalia, Germany, and 121 B. tentaculata from Curonian Lagoon, Lithuania were screened for infections with digeneans. In total, B. tentaculata showed a trematode prevalence of 12.9% and 14%, respectively. The phylogenetic analyses based on 55 novel sequences for 36 isolates demonstrated a high diversity of digeneans. Analyses of the molecular and morphological data revealed a species-rich trematode fauna, comprising 20 species, belonging to ten families. Interestingly, the larval trematode community of B. tentaculata shows little overlap with the well-studied trematode fauna of lymnaeids and planorbids, and some of the detected species (Echinochasmus beleocephalus and E. coaxatus) constitute first records for B. tentaculata in Central Europe. Our study revealed an abundant, diverse and distinct trematode fauna in B. tentaculata, which highlights the need for further research on this so far understudied host–parasite system. Therefore, we might currently be underestimating the ecological roles of several parasite communities of non-pulmonate snail host families in European fresh waters.


2008 ◽  
Vol 68 (3) ◽  
pp. 611-615 ◽  
Author(s):  
LA. Anjos ◽  
WO. Almeida ◽  
A. Vasconcellos ◽  
EMX. Freire ◽  
CFD. Rocha

From January to April 2006, 37 specimens of Hemidactylus mabouia were collected in houses, in the municipality of Barbalha (7° 20' S and 39° 18' W), Ceará State, Northeast Brazil. Among the individuals captured, 17 were infected with pentastomids, totalling a prevalence of 45.9%, which did not differ between sexes. Host size did not influence the infection intensity. Two species of pentastomids were found: Raillietiella frenatus and R. mottae. The prevalence of R. frenatus (43.2%) was higher than R. mottae (2.7%), whereas the infection intensity of R. frenatus was comparatively lower (1.8 ± 1.4) than R. mottae (36 parasites in a single host). Overall mean intensity of infection was 3.8 ± 8.4 pentastomids. We found no pentastomid infecting juvenile geckos. The parameters of infection in this host population are in accordance to the findings of other studies, in which the high parasitism rate was associated to the feeding habits of geckos living in houses and buildings. Hemidactylus mabouia is a new host to R. mottae and the infection by R. frenatus is the first record of the occurrence this pentastomid species in Brazil.


Sign in / Sign up

Export Citation Format

Share Document