Zinc Oxide Nanorod Growth on Au-coated Silverwire

2017 ◽  
Vol 20 (2) ◽  
pp. 049-051
Author(s):  
Hsiang Chen ◽  
Wei Ming Su ◽  
Yu-Tzu Chen ◽  
Chien-Cheng Lu ◽  
Cheng-Yuan Weng

In this study, zinc oxide nanostructures were grown on gold-coated silver wires by hydrothermal method. Multiple analyses on these nanostructures were performed to understand the structure and optical properties of zinc oxide on Au-plated silver wires, Owing to the Au-coated layer, ZnO nanorods could appear rather than ZnO nanoflakes on pure silver wires. Moreover, The deposited gold layer could vary zinc oxide nanostructures to nanorods The multiple analysis shows that lying flat ZnO structures with weak (002) crystalline structures and more defects could appear on the silver wire rather than ZnO nanostructures on pure silver wires.

2019 ◽  
Vol 17 (42) ◽  
pp. 108-124
Author(s):  
Ibrahim Abdulkareem Ali

        In this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34.52) nm. The crystallite size increased due to the incensement of annealing temperature. FESEM analysis indicates that ZnO has hexagonal shape of cylindrical pores, plate-like nanocrystals and Nanorods. AFM analysis shows that the average surface roughness of ZnO Nanostructures increases from 3.96 to 19.1 nm with the increase of annealing temperature. The FTIR peaks indicate successful preparation of ZnO Nanostructures. The FTIR method was used to analyses the chemical bonds which conformed the present of the Zn-O group in the region between (400-500) cm-1. The UV-visible showed a red shift in the absorption spectra related to the shift in the energy gap related to increase in the particle size.  the band gap energy has been calculated from the optical absorption spectra. The annealing process has been fond more effective on the value of energy gap. As the annealing temperature increases, the value of energy gap, increases as well; from (3.12to 3.22) eV. The prepared Nanostructure is used for antibacterial property. It shows strong antibacterial activity against S. aureus and P.aeuruginosa bacteria by the agar disc diffusion method. The white precipitate of ZnO NSs has superior antibacterial activity on gram-positive (S. aureus) than the gram-negative (P.aeuruginosa) bacteria.


2019 ◽  
Vol 294 ◽  
pp. 36-41
Author(s):  
Rolen Brian P. Rivera ◽  
Melchor J. Potestas ◽  
Ma. Reina Suzette B. Madamba ◽  
Rey Y. Capangpangan ◽  
Bernabe L. Linog ◽  
...  

We report on antibacterial activities of Zinc oxide (ZnO) with different structures. Fast furrier transform infrared spectroscopy ZnO nanostructures showed peaks in the range between 450–600 cm-1 indicating the successful growth through the presence of Zn-O stretching. On the other hand, impurities such as zinc complexes might be present due to the appearance of peaks at 1110 cm-1, 1390 cm-1 and 1506 cm-1. Furthermore, SEM images revealed that nanorods and sea-urchin like nanostructures are present in the produced ZnO nanostructures. Nanorods exhibit a better antibacterial response than the sea-urchin like structure. The change in structural morphology along with its purity has greatly influenced the area of bacterial inhibition zone during antibacterial testing.


2011 ◽  
Vol 364 ◽  
pp. 45-49 ◽  
Author(s):  
Azlinda Ab Azlinda ◽  
Zuraida Khusaimi ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Zinc oxide (ZnO) nanostructures prepared by immersion method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) as a precursor, separately stabilized with non-toxic urea (CH4N2O) and hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterized using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows clusters of ZnO nanoflower with serrated broad petals were interestingly formed. ZnO in HMTA showed growth of nanorods. The structures has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nanostructures is found to be significantly affected by the stabilizer.


2015 ◽  
Vol 804 ◽  
pp. 30-33
Author(s):  
Buppachat Toboonsung

Zinc oxide nanostructures were synthesized by an electrochemical dissolution and deposition process. The zinc plates were immerged in deionized water and used as two electrodes. The process was operated by applying the electric field of 10, 12.5, 25 and 50 V/cm, the constant voltage of 10 V and varied the temperatures from room temperature to 70 °C during 1 h. It was found that the electric field and temperature of electrolyte solution had affected to morphologies of ZnO NSs and were grown in forms of nanoflakes, nanoparticles and nanorods.


2018 ◽  
Vol 2 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Gajanan Kale ◽  
Sudhir Arbuj ◽  
Ujjwala Kawade ◽  
Sunit Rane ◽  
Jalindar Ambekar ◽  
...  

A novel paper-mediated template technique for the synthesis of N-ZnO nanostructures.


2009 ◽  
Vol 50 (3) ◽  
pp. 395-406
Author(s):  
JADE R. MACKAY ◽  
STEPHEN P. WHITE ◽  
SHAUN C. HENDY

AbstractZinc oxide is known to produce a wide variety of nanostructures that show promise for a number of applications. The use of electrochemical deposition techniques for growing ZnO nanostructures can allow tight control of the morphology of ZnO through the wide range of deposition parameters available. Here we model the growth of the rods under typical electrochemical conditions, using the Nernst–Planck equations in two dimensions to predict the growth rate and morphology of the nanostructures as a function of time. Generally good quantitative and qualitative agreement is found between the model predictions and recent experimental results.


2014 ◽  
Vol 938 ◽  
pp. 71-75
Author(s):  
Muhd Firdaus Kasim ◽  
Norlida Kamarulzaman ◽  
Suraya Ahmad Kamil

Zinc oxide nanostructures have been done by many scientists but amongst the soft chemistry methods, chelating agents are normally used. In this work zinc oxide nanostructures have been synthesized using a soft chemistry method without using a chelating agent. The precursor were annealed at various temperatures of 400 °C, 500 °C, 600 °C, 700 °C, 800 °C and 1200 °C for 24 h. Nanostructures are found with rod-like shapes and they are compared with larger oval morphology. X-Ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and UV-Vis spectroscopy were used for characterization. XRD results confirm that all peaks were pure and single phase without the presence of any impurities. It was found from electron microscopy results that the morphology of the materials annealed at 400 °C possesses nanorod shape and as the calcination temperature increases, the material consists of mixed rod, spherical and oval shapes. The aspect ratio of the materials decreases when the annealing temperature increases. The absorption edges of the materials annealed at higher temperatures show a red-shift implying that narrowing of the band gaps occur in the materials. Band gap were evaluated and found to be between 3.32 to 3.19 eV.


2014 ◽  
Vol 1043 ◽  
pp. 22-26 ◽  
Author(s):  
Christian Mark Pelicano ◽  
Zainovia Lockman ◽  
Mary Donnabelle Balela

Zinc oxide (ZnO) nanostructures were successfully grown by wet oxidation of zinc (Zn) foil in water at 90 °C for 2 to 8 h. The effect of etching the Zn foil before oxidation treatment on the morphology of ZnO nanostructures was investigated. Hemispherical structures of ZnO nanowires, nanorods and nanotubes were produced on etched Zn foil at different oxidation times. The growth of hemispherical structures was possibly due to the formation of pits along the grains after etching. Without etching, relatively aligned nanorods were formed after wet oxidation with the structure becoming coarser after longer oxidation time. The anisotropic growth ZnO nanostructures on the surface of Zn foil by wet oxidation could be due to the inherent growth habit of ZnO crystal.


2014 ◽  
Vol 62 (4) ◽  
pp. 635-639 ◽  
Author(s):  
M. Procek ◽  
T. Pustelny ◽  
A. Stolarczyk ◽  
E. Maciak

Abstract The paper deals with the investigations concerning the influence of the changing gas environment on electrical resistance of zinc oxide (ZnO) nanostructures. The investigated structures are wide-gap semiconductors with the morphology of ZnO flower-shaped agglomerates of nanostructures. The resistance changes of these nanostructures were tested under the influence of various gases such as nitrogen dioxide (NO2), hydrogen (H2), ammonia (NH3) and also of humidity changes of carrier gases. To clarify the mechanisms of physicochemical processes in ZnO nanostructures during their interaction with gaseous environments, investigations were performed in two different carrier gases, viz. in synthetic air and in nitrogen. The study was carried out at a structure temperature of 200◦C.


Chemosensors ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 120
Author(s):  
Deepika Thakur ◽  
Anshu Sharma ◽  
Abhishek Awasthi ◽  
Dharmender Singh Rana ◽  
Dilbag Singh ◽  
...  

Herein, we report the photocatalytic and fluorescence sensing applications of manganese-doped zinc oxide nanostructures synthesized by a solution combustion technique, using zinc nitrate as an oxidizer and urea as a fuel. The synthesized Mn-doped ZnO nanostructures have been analyzed in terms of their surface morphology, phase composition, elemental analysis, and optical properties with the help of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and UV-Visible (UV-Vis) spectroscopy. A careful observation of the SEM micrograph reveals that the synthesized material was porous and grown in very high density. Due to a well-defined porous structure, the Mn-doped ZnO nanostructures can be used for the detection of ciprofloxacin, which was found to exhibit a significantly low limit of detection (LOD) value i.e., 10.05 µM. The synthesized Mn-doped ZnO nanostructures have been further analyzed for interfering studies, which reveals that the synthesized sensor material possesses very good selectivity toward ciprofloxacin, as it detects selectively even in the presence of other molecules. The synthesized Mn-doped ZnO nanostructures have been further analyzed for the photodegradation of methyl orange (MO) dye. The experimental results reveal that Mn-doped ZnO behaves as an efficient photocatalyst. The 85% degradation of MO has been achieved in 75 min using 0.15 g of Mn-doped ZnO nanostructures. The observed results clearly confirmed that the synthesized Mn-dopedZnO nanostructures are a potential scaffold for the fabrication of sensitive and robust chemical sensors as well as an efficient photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document