PRELIMINARY STUDY ON NOVEL BEAM-TO-COLUMN CONNECTION BASED ON SMA PLATE

Author(s):  
Michael CH Yam ◽  
Ke Ke ◽  
Ping Zhang ◽  
Qingyang Zhao

A novel beam-to-column connection equipped with shape memory alloy (SMA) plates has been proposed to realize resilient performance under low-to-medium seismic actions. In this conference paper, the detailed 3D numerical technique calibrated by the previous paper is adopted to examine the hysteretic behavior of the novel connection. A parametric study covering a reasonable range of parameters including the thickness of the SMA plate, friction coefficient between SMA plate and beam flange and pre-load of the bolt was carried out and the influence of the parameters was characterized. In addition, the effect of the SMA Belleville washer on the connection performance was also studied. The results of the numerical study showed that the initial connection stiffness and the energy-dissipation capacity of the novel connection can be enhanced with the increase of the thickness of the SMA plate. In addition, the initial connection stiffness and energy-dissipation behavior of the novel connection can be improved by increasing the friction coefficient or pre-load of bolts, whereas the increased friction level could compromise the self-centering behavior of the connection. The hysteretic curves of the numerical models of the connection also implied that the SMA washers may contribute to optimizing the connection behavior by increasing the connection stiffness and energy-dissipation capacity without sacrificing the self-centering behavior.

2017 ◽  
Vol 3 (3) ◽  
pp. 152-159
Author(s):  
Ahmadreza Torabipour ◽  
M. R. Shiravand

One of the newest steel beam-column joints to replace conventional welded connections, post-tensioned connection steel is with the upper and lower angles. In this connection are high-strength steel strands that parallel beam web and angles between beams and column. Actually high resistance strands and upper and lower angles respectively are provider centralization properties and energy dissipation capacity of the connection. The benefits of post-tensioned steel can be used in connection with the centralization and lack of relative displacement (drift) persistent, stay elastic core components such as connecting beams, columns and fountains connection, appropriate initial stiffness and joint manufacture with materials and traditional skills. . In this study, numerical modelling in Abaqus software, the results of the analysis were compared with the results of laboratory samples and the results showed that the two together are a perfect match. After validation, parameters influential centrist connection then pulled the thick angles in three numerical models were evaluated.  The results show that by increasing the thickness of the angles, increase energy dissipation capacity and ductility connection and the β₁ value does not experience tangible changes with changes in angle thickness.


2015 ◽  
Vol 9 (1) ◽  
pp. 295-307 ◽  
Author(s):  
Edelis del V. Marquez A. ◽  
William Lobo-Q ◽  
Juan C. Vielma

A comparative study has been done to analyze the behavior of regular steel building structures of 4, 6, 8 and 10 stories, located in seismic zone 5 and soil type S1. The structures were upgraded with different brace configurations according to current Venezuelan codes. A total number of 24 numerical models were analyzed considering non-linear static and incremental dynamic analysis (IDA). The buildings were initially designed as moment resisting frames, and upgraded with six different bracing configurations: concentric braces in “X” and inverted “V”; eccentric braces inverted "V" with horizontal links, inverted “Y” and “X” with vertical links. Short length links were used to ensure a shear failure. The used methodology is based on obtaining the capacity, IDA curves, and bilinear approximations of these curves that allow the determination of yield and ultimate capacity points, in order to estimate important parameters of seismic response: overstrength and ductility; and considering these areas under the curves to estimate elastic deformation energy, energy dissipated by hysteretic damping and equivalent damping. According to the results, the cases with no brace enhancement showed the lowest lateral strength and lateral stiffness and high deformation capacity. On the other hand, the concentric bracing cases, resulted with the highest stiffness and strength and the lowest deformation capacity, therefore they have low ductility and energy dissipation capacity under seismic loading. Structures with links showed intermediate stiffness and strengths, resulting in the best performance in terms of ductility and energy dissipation capacity. The present study provides a better understanding of the benefits of eccentrically braced systems.


2011 ◽  
Vol 94-96 ◽  
pp. 668-673
Author(s):  
Yan Wang ◽  
Li Ya Zhang ◽  
Shuang Feng ◽  
Xiang Gao

14 models of plate-reinforced connections are analyzed by finite element software ANSYS. Failure mode, hysteretic behavior, ductility and energy dissipation capacity are comparatively studied. Results show that plastic hinge formed at the end of the reinforced plate, hysteretic cruves are full and the connections have good ductility. With the increase in length and thickness of the reinforced plate, bearing capacity increases while hysteretic behavior and ductility factor decrease. If the reinforced plate is longer than the length that design requires, brittle failure occurs in the panel zone. The recommended length of the reinforced plate is defined as 0.5-0.8 times of beam depth, the thickness of flange-plate is 1.2-1.4 times of flange thickness and the thickness of cover-plate is 0.7-1.2 times of flange thickness.


2014 ◽  
Vol 6 ◽  
pp. 185629 ◽  
Author(s):  
Qiang Han ◽  
Junfeng Jia ◽  
Zigang Xu ◽  
Yulei Bai ◽  
Nianhua Song

Rhombic mild-steel plate damper (also named rhombic added damping and Stiffness (RADAS)) is a newly proposed and developed bending energy dissipation damper in recent years, and its mechanical properties, seismic behavior, and engineering application still need further investigations. In order to determine the basic mechanical performance of RADAS, fundamental material properties tests of three types of mild-steel specimen including domestically developed mild-steel material with low yield strength were carried out. Then, a quasistatic loading test was performed to evaluate the mechanical performance and hysteretic energy dissipation capacity of these rhombic mild-steel dampers manufactured by aforementioned three types of steel materials. Test results show that yield strength of domestically developed low yield strength steel (LYS) is remarkably lower than that of regular mild steel and its ultimate strain is also 1/3 larger than that of regular mild steel, indicating that the low yield strength steel has a favorable plastic deformation capability. The rhombic mild-steel plate damper with low yield strength steel material possesses smaller yield force and superior hysteretic energy dissipation capacity; thus they can be used to reduce engineering structural vibration and damage during strong earthquakes.


2019 ◽  
Vol 14 (02) ◽  
pp. 2050007
Author(s):  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Shaohua Zhang ◽  
Gaodong Xu

In this study, two types of novel box connections were developed to connect precast concrete (PC) columns and to ensure load transfer integrity. Cyclic loading tests were conducted to investigate the seismic behavior of the PC columns with proposed connections as well as the feasibility and reliability of novel box connections. The failure mode, hysteretic behavior, bearing capacity, ductility, stiffness degradation and energy dissipation were obtained and discussed. The test results indicated that the all PC columns exhibited the ductile flexural failure mode and that the proposed connections could transfer the force effectively. The adoption of novel box connections could improve the deformation capacity and energy dissipation capacity of PC columns. A higher axial compression ratio could enhance the bearing capacity of PC column with proposed connection but would significantly deteriorate the ductility and energy dissipation capacity. Finite element models were developed and the feasibility of the models was verified by the comparison with the test results.


2012 ◽  
Vol 517 ◽  
pp. 564-569
Author(s):  
Jin Song Fan ◽  
An Zhou ◽  
Li Hua Chen ◽  
Bing Kang Liu

Recycled concrete is a kind of new construction materials, and now received more and more attention from researchers and engineers, since its application in engineering projects can well cater to the increasing requirements of development for economic and environment-friendly society. Based on the pseudo static test of five recycled reinforcement concrete frame columns with different experimental axial compression ratios from 0.3 to 0.65, their failure modes, failure mechanism, hysteretic behavior, skeleton curves, bearing capacity, rigidity, ductility and energy dissipation capacity were discussed. Some possible influence factors and disciplines were also selected and analyzed. The study indicates that recycled reinforcement concrete frame columns in the case of relative low axial compression ratios usually exhibited similar and steady mechanical properties with common concrete columns. With the increase of axial compression ratio, its ductility and energy dissipation capacity are decreased and destruction forms tended to obvious brittle fracture, though its bearing capacity could slightly rise. The test results and analysis also manifest recycled concrete had expectative application potentials in most case.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6648-6667
Author(s):  
Xiaoli Han ◽  
Jian Dai ◽  
Wei Qian ◽  
Baolong Li ◽  
Yuanjun Jin ◽  
...  

The wooden columns in timber structures of ancient buildings have column foot tenons of various sizes. The main reason for these differences is their use for different roof loads. Six full-scale specimens with different sizes of column foot tenon were designed and manufactured. The tree species used for the specimens was larch. The quasi-static test was conducted on the specimens that were used in timber structures of ancient buildings. The effects of column foot tenon size on the mechanical properties of larch wooden columns were studied. The moment-rotational angle hysteretic curves, moment-rotational angle skeleton curves, ductility, stiffness degradation, energy dissipation capacity, slippages between the wooden column and the plinth, and the damage of the column foot tenons were examined. The test results showed that the column foot tenon played an important role in the mechanical behavior of the wooden column under low-cycle reversed cyclic loading. The rotation of the column foot tenon improved the energy dissipation capacity of the wooden column. As the rotational angle of the column base increased, the column foot tenon had different degrees of damage. Different sizes of column foot tenon had their own advantages and hysteretic behavior.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Guofeng Xue ◽  
Wei Bao ◽  
Jin Jiang ◽  
Yongsong Shao

This study proposed a beam-to-column joint equipped with a new type of cast steel connector. The cast steel connector concentrated the primary portion of the deformation and energy dissipation of the joint and was installed with full bolted connections, rendering it a replaceable energy dissipation component and facilitating the rapid repair of the joint after an earthquake. Three full-scale specimens were fabricated and tested to investigate the hysteretic behaviors of the proposed joints under cyclic loadings. The results showed that the proposed cast steel connector exhibited reliable ductility and energy dissipation capacity. The beam-to-column joints with cast steel connectors under appropriate configuration can limit the deformation to the cast steel connector and protect the remaining joint components from plastic deformation. A more detailed finite element analysis was performed to investigate the hysteretic behavior of the joint further. The FEM results illustrated that the thickness of the vertical leg of the cast steel connector can significantly influence the stiffness and bearing capacity of the joint. Meantime, it would improve the hysteretic behavior effectively. The proposed beam-to-column joints with cast steel connectors can achieve the requirement of stiffness and load-bearing capacity and can be widely applicable in practical engineering.


2019 ◽  
Vol 275 ◽  
pp. 02013
Author(s):  
Lianglong Song ◽  
Xin Shi ◽  
Tong Guo ◽  
Wenqian Zheng

A novel self-centering prestressed concrete (SCPC) pier with external energy dissipators (EDs) has been recently proposed to minimize the structural damage and residual deformations, and enhance the corrosion-resistant capability. In the SCPC pier with external EDs, internal post-tensioned basalt fiber-reinforced polymer (BFRP) tendons are used to provide the self-centering ability, and the energy dissipation is realized through the external aluminum bars. Previous cyclic load tests of 1/3-scaled specimens showed that the SCPC pier with external EDs had desirable self-centering and energy dissipation capacities. In this study, a three-dimensional finite element (FE) model is developed using the ANSYS software. The FE model can capture the complex behavior of the proposed pier, such as gap opening/closing at the pier-foundation interface, energy dissipation of EDs, and self-centering capacity. Good agreement is observed between the numerical and experimental results, demonstrating the accuracy of the developed FE model. This will enable the parametric studies on the seismic performance of the SCPC pier with external EDs in the future.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1099
Author(s):  
González-Sanz ◽  
Galé-Lamuela ◽  
Escolano-Margarit ◽  
Benavent-Climent

Shape memory alloys in the form of bars are increasingly used to control structures under seismic loadings. This study investigates the hysteretic behavior and the ultimate energy dissipation capacity of large-diameter NiTi bars subjected to low- and high-cycle fatigue. Several specimens are subjected to quasi-static and to dynamic cyclic loading at different frequencies. The influence of the rate of loading on the shape of the hysteresis loops is analysed in terms of the amount of dissipated energy, equivalent viscous damping, variations of the loading/unloading stresses, and residual deformations. It is found that the log-log scale shows a linear relationship between the number of cycles to failure and the normalized amount of energy dissipated in one cycle, both for low- and for high-cycle fatigue. Based on the experimental results, a numerical model is proposed that consists of two springs with different restoring force characteristics (flag-shape and elastic-perfectly plastic) connected in series. The model can be used to characterize the hysteretic behavior of NiTi bars used as energy dissipation devices in advanced earthquake resistant structures. The model is validated with shake table tests conducted on a reinforced concrete structure equipped with 12.7 mm diameter NiTi bars as energy dissipation devices.


Sign in / Sign up

Export Citation Format

Share Document