EVALUATION OF NORMAL AND MODIFIED ASPHALT ACCORDING TO CONVENTIONAL AND MODERN GRADING SYSTEMS

Author(s):  
Maram Saudy ◽  
Safwan Khedr

Asphalt plays a significant role in pavement quality. The need for high-performance pavements with long service life and low maintenance requirements is the motive behind thorough research and studies of asphalt characteristics. This research focuses on studying all sources of Egyptian asphalt over a span of time using both conventional and Superpave grading techniques in order to characterize asphalt performance and also to answer the question whether the Egyptian asphalts need modification. The results of this research indicate that all Egyptian normal (virgin) 60/70 asphalt samples from different sources failed to meet penetration grading requirements, viscosity grading standards AC-20 (high quality); with minor exceptions, viscosity grading system AC-20 (low quality), and both AR-8000 and AR-1000 Aged Residue grading systems. When Superpave grading system was employed, results indicate that all normal asphalt samples failed to meet the basic requirements (without traffic adjustment) according to the Egyptian climatic requirements for high reliability projects (PG70-10 and PG76-10). The testing results accommodate Superpave requirements for lower levels of reliability and/or lower level of conservativeness. This emphasizes the flexibility and reliability of Superpave grading system as compared to conventional grading systems. On the other hand all modified asphalt samples, using an SBS modifier, passed according to the base high reliability projects and/or high level of conservativeness requirements of the Superpave grading system. Finally it is concluded that Egyptian asphalt should be modified in order to provide satisfactory performance especially for high reliability projects in hot regions with high and/or slow traffic.

1997 ◽  
Vol 117 (4) ◽  
pp. 322-325 ◽  
Author(s):  
Jürg Rickenmann ◽  
Claude Jaquenod ◽  
D. Cerenko ◽  
Ugo Fisch

The Fisch Detailed Evaluation of Facial Symmetry (DEFS) and House-Brackmann grading system (HBGS) were compared by statistical examination for their reliability and interob-server variability. Furthermore, the correlation and agreement with a standard global evaluation were compared. Therefore 47 patients with facial palsy of different cause have been evaluated with the two systems, and the global overall evaluation was done by five otolaryngologists familiar with facial palsy. The DEFS showed a high reliability of 0.93 compared with a reliability of 0.77 with the HBGS (international standard requires a reliability of at least 0.8). The mean interobserver variability is 5.24% (SD = 3.2%) with the DEFS and 9.26% (SD = 5.0%) with the HBGS; with a confidence interval of 95%, it is 11.6% and 19.26%. The correlation of both gradings with the global evaluation was high, with r = 0.98 and r = 0.97. The DEFS shows an excellent agreement with the global overall evaluation in 41 (87%) of 47 cases and the HBGS in 32 (66%) of 47 cases.


Author(s):  
R. Jett Field ◽  
Christopher K. Sortore ◽  
Victor Iannello

Magnetic bearing systems for more-electric engines (MEEs) are under development for aircraft and industrial applications to improve performance and reduce maintenance requirements. Key features of the magnetic bearing system are high performance, high temperature actuators with integrated sensors; a high speed digital controller; a high reliability, fault-tolerant system architecture; modular amplifiers; active control of tip clearance; and adaptive control algorithms. Critical components of the magnetic bearing system have been demonstrated in an engine manufacturer’s rotordynamic test stand and other components are in various stages of development.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


2021 ◽  
pp. 1-7
Author(s):  
Haniel Fernandes

<b><i>Background:</i></b> Soccer is an extremely competitive sport, where the most match important moments can be defined in detail. Use of ergogenic supplements can be crucial to improve the performance of a high-performance athlete. Therefore, knowing which ergogenic supplements are important for soccer players can be an interesting strategy to maintain high level in this sport until final and decisive moments of the match. In addition, other supplements, such as dietary supplements, have been studied and increasingly referenced in the scientific literature. But, what if ergogenic supplements were combined with dietary supplements? This review brings some recommendations to improve performance of soccer athletes on the field through dietary and/or ergogenic supplements that can be used simultaneously. <b><i>Summary:</i></b> Soccer is a competitive sport, where the match important moments can be defined in detail. Thus, use of ergogenic supplements covered in this review can improve performance of elite soccer players maintaining high level in the match until final moments, such as creatine 3–5 g day<sup>−1</sup>, caffeine 3–6 mg kg<sup>−1</sup> BW around 60 min before the match, sodium bicarbonate 0.1–0.4 g kg<sup>−1</sup> BW starting from 30 to 180 min before the match, β-alanine 3.2 and 6.4 g day<sup>−1</sup> provided in the sustained-release tablets divided into 4 times a day, and nitrate-rich beetroot juice 60 g in 200 mL of water (6 mmol of NO3<sup>−</sup> L) around 120 min before match or training, including a combination possible with taurine 50 mg kg<sup>−1</sup> BW day<sup>−1</sup>, citrulline 1.2–3.4 g day<sup>−1</sup>, and arginine 1.2–6 g day<sup>−1</sup>. <b><i>Key Messages:</i></b> Soccer athletes can combine ergogenic and dietary supplements to improve their performance on the field. The ergogenic and dietary supplements used in a scientifically recommended dose did not demonstrate relevant side effects. The use of various evidence-based supplements can add up to further improvement in the performance of the elite soccer players.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 71
Author(s):  
Charalampos Dimitriadis ◽  
Ivoni Fournari-Konstantinidou ◽  
Laurent Sourbès ◽  
Drosos Koutsoubas ◽  
Stelios Katsanevakis

Understanding the interactions among invasive species, native species and marine protected areas (MPAs), and the long-term regime shifts in MPAs is receiving increased attention, since biological invasions can alter the structure and functioning of the protected ecosystems and challenge conservation efforts. Here we found evidence of marked modifications in the rocky reef associated biota in a Mediterranean MPA from 2009 to 2019 through visual census surveys, due to the presence of invasive species altering the structure of the ecosystem and triggering complex cascading effects on the long term. Low levels of the populations of native high-level predators were accompanied by the population increase and high performance of both native and invasive fish herbivores. Subsequently the overgrazing and habitat degradation resulted in cascading effects towards the diminishing of the native and invasive invertebrate grazers and omnivorous benthic species. Our study represents a good showcase of how invasive species can coexist or exclude native biota and at the same time regulate or out-compete other established invaders and native species.


Author(s):  
Umar Ibrahim Minhas ◽  
Roger Woods ◽  
Georgios Karakonstantis

AbstractWhilst FPGAs have been used in cloud ecosystems, it is still extremely challenging to achieve high compute density when mapping heterogeneous multi-tasks on shared resources at runtime. This work addresses this by treating the FPGA resource as a service and employing multi-task processing at the high level, design space exploration and static off-line partitioning in order to allow more efficient mapping of heterogeneous tasks onto the FPGA. In addition, a new, comprehensive runtime functional simulator is used to evaluate the effect of various spatial and temporal constraints on both the existing and new approaches when varying system design parameters. A comprehensive suite of real high performance computing tasks was implemented on a Nallatech 385 FPGA card and show that our approach can provide on average 2.9 × and 2.3 × higher system throughput for compute and mixed intensity tasks, while 0.2 × lower for memory intensive tasks due to external memory access latency and bandwidth limitations. The work has been extended by introducing a novel scheduling scheme to enhance temporal utilization of resources when using the proposed approach. Additional results for large queues of mixed intensity tasks (compute and memory) show that the proposed partitioning and scheduling approach can provide higher than 3 × system speedup over previous schemes.


Author(s):  
Breno A. de Melo Menezes ◽  
Nina Herrmann ◽  
Herbert Kuchen ◽  
Fernando Buarque de Lima Neto

AbstractParallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when solving complex optimization problems. When aiming for a GPU environment, developing efficient parallel versions of such algorithms using CUDA can be a difficult and error-prone task even for experienced programmers. To overcome this issue, the parallel programming model of Algorithmic Skeletons simplifies parallel programs by abstracting from low-level features. This is realized by defining common programming patterns (e.g. map, fold and zip) that later on will be converted to efficient parallel code. In this paper, we show how algorithmic skeletons formulated in the domain specific language Musket can cope with the development of a parallel implementation of ACO and how that compares to a low-level implementation. Our experimental results show that Musket suits the development of ACO. Besides making it easier for the programmer to deal with the parallelization aspects, Musket generates high performance code with similar execution times when compared to low-level implementations.


Sign in / Sign up

Export Citation Format

Share Document