A Magnetic Bearing System for More-Electric Engines

Author(s):  
R. Jett Field ◽  
Christopher K. Sortore ◽  
Victor Iannello

Magnetic bearing systems for more-electric engines (MEEs) are under development for aircraft and industrial applications to improve performance and reduce maintenance requirements. Key features of the magnetic bearing system are high performance, high temperature actuators with integrated sensors; a high speed digital controller; a high reliability, fault-tolerant system architecture; modular amplifiers; active control of tip clearance; and adaptive control algorithms. Critical components of the magnetic bearing system have been demonstrated in an engine manufacturer’s rotordynamic test stand and other components are in various stages of development.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Enqiong Tang ◽  
Bangcheng Han

The magnetically suspended control moment gyros (MSCMGs) are complex system with multivariable, nonlinear, and strongly gyroscopic coupling. Therefore, its reliability is a key factor to determine whether it can be widely used in spacecraft. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate normally in spite of some faults in the system. However, the conventional magnetic bearing and fault-tolerant control strategies are not suitable for the MSCMGs because of the moving-gimbal effects and requirement of the maximum load capacity after failure. A novel fault-tolerant magnetic bearing system which has low power loss and good robust performances to reject the moving-gimbal effects is presented in this paper. Moreover, its maximum load capacity is unchanged before and after failure. In addition, the compensation filters are designed to improve the bandwidth of the amplifiers so that the nutation stability of the high-speed rotor cannot be affected by the increasing of the coil currents. The experimental results show the effectiveness and superiority of the proposed fault-tolerant system.


1999 ◽  
Vol 121 (3) ◽  
pp. 504-508 ◽  
Author(s):  
E. H. Maslen ◽  
C. K. Sortore ◽  
G. T. Gillies ◽  
R. D. Williams ◽  
S. J. Fedigan ◽  
...  

A fault tolerant magnetic bearing system was developed and demonstrated on a large flexible-rotor test rig. The bearing system comprises a high speed, fault tolerant digital controller, three high capacity radial magnetic bearings, one thrust bearing, conventional variable reluctance position sensors, and an array of commercial switching amplifiers. Controller fault tolerance is achieved through a very high speed voting mechanism which implements triple modular redundancy with a powered spare CPU, thereby permitting failure of up to three CPU modules without system failure. Amplifier/cabling/coil fault tolerance is achieved by using a separate power amplifier for each bearing coil and permitting amplifier reconfiguration by the controller upon detection of faults. This allows hot replacement of failed amplifiers without any system degradation and without providing any excess amplifier kVA capacity over the nominal system requirement. Implemented on a large (2440 mm in length) flexible rotor, the system shows excellent rejection of faults including the failure of three CPUs as well as failure of two adjacent amplifiers (or cabling) controlling an entire stator quadrant.


2012 ◽  
Vol 614-615 ◽  
pp. 1299-1302
Author(s):  
Ming Jing Li ◽  
Yu Bing Dong ◽  
Guang Liang Cheng

Multiple high speed CMOS cameras composing intersection system to splice large effect field of view(EFV). The key problem of system is how to locate multiple CMOS cameras in suitable position. Effect field of view was determined according to size, quantity and dispersion area of objects, so to determine camera position located on below, both sides and ahead to moving targets. This paper analyzes effect splicing field of view, operating range etc through establishing mathematical model and MATLAB simulation. Location method of system has advantage of flexibility splicing, convenient adjustment, high reliability and high performance-price ratio.


2002 ◽  
Vol 124 (4) ◽  
pp. 1025-1031 ◽  
Author(s):  
M. Spirig ◽  
J. Schmied ◽  
P. Jenckel ◽  
U. Kanne

The use of magnetic bearing in industrial applications has increased due to their unique properties. Nowadays efficiency and predictability in handling rotors on magnetic bearings is asked with the same standard as conventional rotors on oil or roller bearings. First of all one must be aware of the special technical properties of magnetic bearing designs. The dynamic behavior of the rotor combined with requirements of the application define the desired bearing characteristic. With modern tools covering the mechanical aspects as well as the electronic controllers and their digital implementation on a DSP, these properties can be designed. However, despite the use of such efficient tools engineering practice is needed. Therefore this paper summarizes the major steps in the control design process of industrial applications. Three rotors supported on magnetic bearing with their specific dynamic behavior are presented: a very small high speed spindle (120,000 rpm); a small industrial turbo molecular pump rotor (36,000 rpm); and a large multistage centrifugal compressor (600 to 6300 rmp). The results of the analyses and their experimental verification are given.


2000 ◽  
Vol 123 (3) ◽  
pp. 464-472 ◽  
Author(s):  
Z. S. Spakovszky ◽  
J. D. Paduano ◽  
R. Larsonneur ◽  
A. Traxler ◽  
M. M. Bright

Magnetic bearings are widely used as active suspension devices in rotating machinery, mainly for active vibration control purposes. The concept of active tip-clearance control suggests a new application of magnetic bearings as servo-actuators to stabilize rotating stall in axial compressors. This paper presents a first-of-a-kind feasibility study of an active stall control experiment with a magnetic bearing servo-actuator in the NASA Glenn high-speed single-stage compressor test facility. Together with CFD and experimental data a two-dimensional, incompressible compressor stability model was used in a stochastic estimation and control analysis to determine the required magnetic bearing performance for compressor stall control. The resulting requirements introduced new challenges to the magnetic bearing actuator design. A magnetic bearing servo-actuator was designed that fulfilled the performance specifications. Control laws were then developed to stabilize the compressor shaft. In a second control loop, a constant gain controller was implemented to stabilize rotating stall. A detailed closed loop simulation at 100 percent corrected design speed resulted in a 2.3 percent reduction of stalling mass flow, which is comparable to results obtained in the same compressor by Weigl et al. (1998. ASME J. Turbomach. 120, 625–636) using unsteady air injection. The design and simulation results presented here establish the viability of magnetic bearings for stall control in aero-engine high-speed compressors. Furthermore, the paper outlines a general design procedure to develop magnetic bearing servo-actuators for high-speed turbomachinery.


Author(s):  
Zhusan Luo ◽  
Carl Schwarz

Abstract Integrally geared centrifugal compressors have found wide applications in air separation plants and the petrochemical industry because they can be readily designed to run at a higher efficiency than in-line compressors. Many of these compressors with multiple stages are designed to meet the demands for high power and high speed applications with high efficiency and high reliability. These requirements are challenges for their rotordynamic designs. Some compressors may experience excessive synchronous or subsynchronous vibrations during commissioning or in a short period of service. This study starts with discussing the vibration characteristics of a compressor pinion-bearing system, including undamped critical speeds, unbalance responses, and rotordynamic stability. To improve the rotordynamic performance, a systematic and feasible approach for modifying a rotordynamic design has been proposed. It has been showed that damped modes at an operating speed are key indicators of the rotordynamic performance. The sensitivities of damped modes to main design variables, i.e. bearing geometry, shaft geometry and impeller mass properties, are thoroughly examined. A procedure for design modification is proposed for general guidance. The feasibility and effectiveness of this method have been demonstrated in the modification of a pinion-bearing system. In addition, this paper also proposes a method to evaluate the torsional natural frequencies of an equivalent pinion model and briefly discusses the application of optimal design methodology to the rotordynamic design modification.


Author(s):  
Erik E. Swanson ◽  
Hooshang Heshmat ◽  
James Walton

To meet the advanced bearing needs of modern turbomachinery, a hybrid foil-magnetic hybrid bearing system was designed, fabricated and tested in a test rig designed to simulate the rotor dynamics of a small gas turbine engine (31 kN to 53 kN thrust class). This oil-free bearing system combines the excellent low and zero-speed capabilities of the magnetic bearing with the high load capacity and high speed performance of the compliant foil bearing. An experimental program is described which documents the capabilities of the bearing system for sharing load during operation at up to 30,000 RPM and the foil bearing component’s ability to function as a back-up in case of magnetic bearing failure. At an operating speed of 22,000 RPM, loads exceeding 5300 N were carried by the system. This load sharing could be manipulated by an especially designed electronic control algorithm. In all tests, rotor excursions were small and stable. During deliberately staged magnetic bearing malfunctions, the foil bearing proved capable of supporting the rotor during continued operation at full load and speed, as well as allowing a safe rotor coast-down. The hybrid system tripled the load capacity of the magnetic bearing alone and can offer a significant reduction in total bearing weight compared to a comparable magnetic bearing.


Author(s):  
E. E. Swanson ◽  
H. Heshmat ◽  
J. S. Shin

The demand for high power density, reliable, low maintenance, oil-free turbomachinery imposes significant demands on the bearing system. The full benefits of high speed, permanent magnet driven machines, for example are realized at speeds exceeding the capabilities of rolling element bearings. The high speeds, and a desire for oil-free operation also make conventional liquid lubricated bearings an undesirable alternative. The modern, oil-free foil bearing provides an excellent alternative, providing low power loss, adequate damping for supercritical operation, tolerance of elevated temperatures and long life. In this paper, the application of modern foil bearings to a high speed, oil-free turbo-compressor is discussed. In this demanding application, foil bearings support a 24 pound, multi-component rotor operating at 70,000 RPM with a bending critical speed of approximately 43,000 RPM. Stable and reliable operation over the full speed range has been demonstrated. This application also required low bearing start-up torque for compatibility with the constant torque characteristic of the integral permanent magnet motor. This work discusses the rotor bearing system design, the development program approach, and the results of testing to date. Data for both a turbine driven configuration, as well as a high speed integral motor driven configuration are presented.


Author(s):  
Maram Saudy ◽  
Safwan Khedr

Asphalt plays a significant role in pavement quality. The need for high-performance pavements with long service life and low maintenance requirements is the motive behind thorough research and studies of asphalt characteristics. This research focuses on studying all sources of Egyptian asphalt over a span of time using both conventional and Superpave grading techniques in order to characterize asphalt performance and also to answer the question whether the Egyptian asphalts need modification. The results of this research indicate that all Egyptian normal (virgin) 60/70 asphalt samples from different sources failed to meet penetration grading requirements, viscosity grading standards AC-20 (high quality); with minor exceptions, viscosity grading system AC-20 (low quality), and both AR-8000 and AR-1000 Aged Residue grading systems. When Superpave grading system was employed, results indicate that all normal asphalt samples failed to meet the basic requirements (without traffic adjustment) according to the Egyptian climatic requirements for high reliability projects (PG70-10 and PG76-10). The testing results accommodate Superpave requirements for lower levels of reliability and/or lower level of conservativeness. This emphasizes the flexibility and reliability of Superpave grading system as compared to conventional grading systems. On the other hand all modified asphalt samples, using an SBS modifier, passed according to the base high reliability projects and/or high level of conservativeness requirements of the Superpave grading system. Finally it is concluded that Egyptian asphalt should be modified in order to provide satisfactory performance especially for high reliability projects in hot regions with high and/or slow traffic.


1983 ◽  
Vol 105 (4) ◽  
pp. 844-850 ◽  
Author(s):  
I. G. Rice

High-cycle pressure-ratio (38–42) gas turbines being developed for future aircraft and, in turn, industrial applications impose more critical disk and casing cooling and thermal-expansion problems. Additional attention, therefore, is being focused on cooling and the proper selection of materials. Associated blade-tip clearance control of the high-pressure compressor and high-temperature turbine is critical for high performance. This paper relates to the use of extracted steam from a steam turbine as a coolant in a combined cycle to enhance material selection and to control expansion in such a manner that the cooling process increases combined-cycle efficiency, gas turbine output, and steam turbine output.


Sign in / Sign up

Export Citation Format

Share Document