scholarly journals DEVELOPMENT OF LIME BASED, LOAD-BEARING MATERIALS FOR WALL CONSTRUCTION

Author(s):  
Fin O'Flaherty ◽  
Faraj Khalaf ◽  
Vincenzo Starinieri

Construction of buildings in the UK is traditionally done using building materials such as concrete blocks, bricks and less so, timber. Although timber is a sustainable product, concrete blocks and bricks require a lot of energy input during fabrication, concrete especially being a large producer of CO2 during its manufacture. Reducing energy consumption either domestically or industrially is an important part of achieving the UK Government’s legally binding commitment to reducing greenhouse gas emissions by at least 80% (relative to 1990 levels) by 2050. New, low embodied energy construction materials are urgently required to enable the construction industry to revolutionize and drastically decrease its carbon footprint. The constituents of the materials investigated were selected based on low embodied energy criterion. To achieve this, lime was selected as the base material with hemp (fibers and shives) and PVAc used as additives. Specially selected nanomaterials were used as fillers. The constituents were combined in a manner, which led to different materials being developed, all exhibiting different characteristics. One characteristic was strength (load bearing) to eliminate the use of timber studding during construction. The results show that the highest strengths were achieved by mixing 10 wt. % hemp fiber, 4 wt. % nanozinc oxide and 12 wt. % PVAc at a 0.4 W/L ratio, yielding 17.7 MPa in compression and 7.3 MPa in flexure.

Buildings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 136 ◽  
Author(s):  
Woubishet Zewdu Taffese ◽  
Kassahun Admassu Abegaz

Buildings use a wide range of construction materials, and the manufacturing of each material consumes energy and emits CO2. Several studies have already been conducted to evaluate the embodied energy and the related CO2 emissions of building materials, which are mainly based on case studies from developed countries. There is a considerable gap in cases of developing countries regarding assessment of embodied energy and CO2 emissions of these building materials. This study identified the top five most used construction materials (cement, sand, coarse aggregates, hollow concrete blocks, and reinforcement bars), which are also prime sources of waste generation during construction in the Ethiopian building construction sector. Then, what followed was the evaluation of the embodied energies and CO2 emissions of these materials by examining five commercial and public buildings within the cradle-to-site lifecycle boundary. The evaluation results demonstrated that cement, hollow concrete blocks (HCB), and reinforcement bars (rebars) are the major consumers of energy and major CO2 emitters. Cumulatively, they were responsible for 94% of the embodied energy and 98% of the CO2 emissions. The waste part of the construction materials has inflated the embodied energy and the subsequent CO2 emissions considerably. The study also recommended several strategies for the reduction of embodied energy and the related CO2 emissions. The research delivers critical insights into embodied energy and CO2 emissions of the five most used building materials in the Ethiopian construction industry, as there are no prior studies on this theme. This might be a cause to arouse awareness and interest among the policy makers and the wider public to clearly understand the importance of research on this crucial issue to develop national energy and CO2 descriptors for construction materials, in order to take care of our naturally endowed, but yet fragile, human habitat.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1077A-1077
Author(s):  
Michael K. Bomford ◽  
Anthony Silvernail

Commercial vegetable growers in Kentucky have used high tunnels for year-round production for the past decade. They suggest it is a more energy-efficient and economical means of supplying off-season vegetables to the region than trucking field-grown produce from warmer regions. In 2005, we erected a 9 × 12-m high tunnel, designed to comply with National Organic Program standards, at the Kentucky State University Research Farm. We recorded the retail cost of each component, and estimated its embodied energy using published figures for common building materials. The materials used for construction were valued at $2830, and contained 59 GJ of embodied energy. The frame and plastic cladding accounted for 36% and 24% of the total capital cost, and 28% and 37% of the embodied energy, respectively, with other components accounting for the remainder. Assuming that the frame, plastic cladding and other components last 20, 4, and 10 years, respectively, the average cost of the tunnel is $328/year, and the average energy input is 8 GJ/year. The plastic cladding accounts for 50% of the annual amortized cost, and 66% of the embodied energy. If the structure is used to grow 2000 heads of lettuce each winter, and 450 kg of early market tomatoes each spring, it could generate sufficient income to recover the total cost of construction materials in its first year. Trucking this amount of produce from California to Kentucky would consume approximately 8 GJ. We conclude that there is an economic incentive for growers to adopt this technology, but no energy efficiency advantage to society. Longer tunnels, such as the 9 × 29-m models more commonly used by commercial vegetable growers in Kentucky, will be more energy- and capital-efficient.


10.29007/8lk1 ◽  
2020 ◽  
Author(s):  
Manish Kumar Dixit ◽  
Sarel Lavy ◽  
Parag Abdagiri

Buildings consume nearly half of global energy each year in their construction and operation as embodied and operational energy releasing approximately 40% of global carbon emission. Embodied energy (EE) is consumed indirectly through the use of construction materials, assemblies, and equipment, and directly in construction processes and related transportation. Operational energy (OE) is consumed in building air-conditioning, heating, lighting, and powering equipment. Both EE and OE must be minimized to lower this huge energy footprint of buildings. To decrease EE, a complete and accurate EE assessment is essential, which, however, is a quite data-intensive and time-consuming process. EE is conventionally computed using process- and input-output (IO)-based methods. Hybrid approaches that combine the two methods are also used to compute EE. In an IO-based method, macroeconomic data is translated into energy flows, which indicates a potential relationship between energy and economic flows, and consequently between EE and cost. In this paper, we investigated the EE-cost relationship at the building and construction material levels and found a strong positive correlation between the EE and cost of the study buildings. The results indicate a need to further analyze this relationship through regression analysis to see if EE can be predicted from cost data.


2016 ◽  
Vol 27 (6) ◽  
pp. 722-739
Author(s):  
Kristel Rebane ◽  
Alvina Reihan

Purpose The purpose of this paper is to propose a more carbon efficient alternative design using engineered timber components over reinforced concrete elements to a recently completed non-residential building located in Tallinn, Estonia. Also to promote building materials that have proved to have lower embodied carbon and energy. Design/methodology/approach The paper is based on data collected from the original project drawings, embodied carbon and embodied energy values of construction materials under comparison which are based on Inventory of Carbon & Energy database and on the research conducted in Finland that focussed on wooden building products. The engineered timber solution is designed in accordance with relevant regulations and laws including requirements for fire safety and sound insulation. Findings Buildings embodied carbon and embodied energy can be reduced by using proposed engineered timber materials. Research limitations/implications The outcome of current research is limited and applies only to the reference building and its proposed alternative, therefore it should be taken into consideration before any use. Still it provides clear information that using more carbon efficient materials can significantly reduce the carbon footprint of a building. Practical implications The outcome can be used as a tool promoting materials with a lower embodied carbon and energy in public procurements. Originality/value This study comparing buildings enclosure system alternatives as a whole by allowing to choose more environmentally friendly solution is the first in Estonia.


2014 ◽  
Vol 1000 ◽  
pp. 178-181
Author(s):  
Pavel Leber ◽  
René Čechmánek ◽  
Petr Bibora ◽  
Ivana Chromková ◽  
Martin Vyvážil

This paper describes research on utilization of solid waste materials from mineral wool production. Aim of this research is verification of most suitable way of separated waste material utilization in building materials and determination of its maximal amount without negative effect on physical-mechanical and ecological characteristics of a final product. The research was focused on self-leveling mixtures, thin-walled glass fibre reinforced concrete products and vibropressed thin-walled shaped concrete blocks.


Author(s):  
Jenan Abu qadourah ◽  
Ala’a Al-Falahat ◽  
Saad Alrwashdeh

This paper evaluates and compares the embodied energy and embodied carbon using a Life Cycle Assessment (LCA) approach for three different intermediate floor structures, all of which use prefabricated materials—cross-laminated timber (CLT), precast hollow-core concrete, and solid concrete—to decide which floor construction materials have less environmental impact for use in the construction of a semi-detached house in the UK. The Inventory of Carbon & Energy (ICE) and the Carbon Calculator tool were used to calculate the carbon footprint from “cradle to grave” to determine whether the use of a CLT solution provides improved environmental performance over the traditional concrete solutions. The carbon footprint results indicate that the use of a hollow-core precast concrete floor system emits less carbon than the other two systems, although the concrete requires more fossil fuel input than the timber during the manufacturing process, so based on this, the footprint from cradle to gate for the timber was expected to be the less than that of the concrete. However, the results show the opposite; this is because of the differences in the material quantities needed in each system.


2021 ◽  
Author(s):  
Paalo Moreno ◽  
Nicole Villamizar ◽  
Jefferson Perez ◽  
Angelica Bayona ◽  
Jesús Roman ◽  
...  

Abstract Housing construction consumes more materials than any other economic activity, with a total of 40.6 Gt/year. Boards are placed between construction materials to serve as non-load-bearing partitions. Studies have been performed to find alternatives to conventional materials using recycled fibers, agro-industrial waste, and protein binders as raw materials. Here, fire-resistant cellulose boards with low density and adequate flexural strength were produced for use as non-load-bearing partitions using waste newspapers, soy protein, boric acid, and borax. A central composite design (CCD) was employed to study the influence of the board component percentage on flame retardancy (UL 94 horizontal burning test), density (ASTM D1037-12) and flexural strength (ISO 178–2010). The cellulose boards were characterized by thermal analysis (ASTM E1131-14) and scanning electron microscopy. Fire-resistant cellulose boards were successfully made with low densities (120–170 kg/m3) and flexural strength (0.06–0.64 MPa). The mechanical performance and fire resistance of cellulose boards suggest their suitability for use as building materials. A useful and sustainable construction material with great potential is produced with the valorization of waste materials.


2021 ◽  
Vol 52 (2) ◽  
Author(s):  
Monica Parlato ◽  
Simona M.C. Porto ◽  
Giovanni Cascone

Raw earth, like wood and stone, is one of the oldest building materials used across the world. Nowadays, given the growing role of circular economy, researchers are ever more interested in raw earth-based building materials, because they are widely available and environmentally friendly. The use of this traditional material has positive environmental consequences, especially in traditional rural building reuse and in rural landscape preservation. In fact, raw earth is locally available and totally recyclable and, thanks to its perfect integration into the landscape, it improves site visual perception. Additives and/or chemical stabilizer agents (i.e., Portland cement) are often used in the production of raw earthbased building components in order to increase their mechanical performance and durability. This production process reduces the environmental sustainability of the base material and causes a relevant increase on the embodied energy (i.e., the total energy required for the extraction, processing, manufacturing, and delivery of building components). This research work aimed at investigating how to improve the mix-design of earth-based building materials in order to increase their mechanical properties without any addition of chemical agents. A physical stabilization was performed on an original texture soil by adding various particle sizes. Mechanical tests were carried out on five different soil mixes by changing soil composition, aggregates, and water. Specimens made with mix-design 5 offered the best results in terms of flexural and compressive strength values which were 1.65 MPa and 6.74 MPa, respectively. Mix 3 obtained the lowest linear shrinkage rate (6.04%). Since raw earth-based materials are highly sensitive to soil composition and aggregates, this study attempted to obtain a repeatable process to produce semi-industrial adobes by optimizing and controlling various natural materials (i.e., soils, aggregates, and water).


Construction activity utilizes lot of resources and energy to manufacture and install building components. Most of the construction materials are cement based or poly ethylene products, which needs lot of embodied energy to produce and create problems related to environment. Reusing these products after its service life is also very difficult. Manufacturing of cement liberates almost equal amount of carbon di oxide by weight, all contribute towards global warming and depletion of natural resources. Use of mud and naturally available materials in buildings is evident in olden buildings found to be a sustainable alternative solution. Most of the historic buildings and monuments existing today were made with earth adobe and lime. The use of modern technology made the earth compressed at higher pressure to form as hard material, use of stabilizers like cement and lime made them stronger, durable and less water absorbent. Adding glass fibers in the mixture will improve the strength and crack resistance of the block. The objective of this study is to add glass fibers in the mixture to increase the strength and crack resistance of CSEB.


2016 ◽  
Vol 8 (2) ◽  
pp. 99-108
Author(s):  
Ratri Yuli Lestari

Wood has been widely used as building materials. The trends of using wood as construction materials in a building are keep increasing because the positive trend in construction expertise to use wood as building construction. Wood can be used as building materials such as structural construction, decking, roofing, flooring, cladding, furniture and interior. Wood is chosen because it is easy to work, flexible in design, high energy efficiency, low embodied energy, low global warming potential, fire resistance, and importantly wood is renewable and recyclable resources. Each country has their own regulations related to the application of wood as materials in high rise building. However, these regulations stimulated the expertises to demonstrate that wood is capable to be high-rise building materials and fulfil the safety building requirements. Keywords : wood, high-rise building, environmentally friendly


Sign in / Sign up

Export Citation Format

Share Document