scholarly journals Research in Sustainability of Chain Conveyor Systems

2020 ◽  
Vol 1 ◽  
pp. 83-94
Author(s):  
Lynn Lüdemann ◽  
Jens Sumpf ◽  
Markus Golder ◽  
Marcus Bona

Climate Change is a crucial challenge of today. The main reason is increased man-made emissions of climate gases, like CO2, into the atmosphere. In every part of our life, these emissions have to be reduced. Transport of goods, called intra- or extralogistics, is necessary for economic welfare. Intralogistics means the transport of goods in distribution centres or manufacturing spaces, e. g. between machines. For continuous transport processes chain conveyor systems (CCS) are state of the art. The research group “Plastic Components and Tribology” at professorship of Conveying Engineering and Materials Handling focus on impacts of their whole life cycle, from design over use until end-of-life, on the environment. Another focus is the development of Environmental Product Declaration (EPD) for chain conveyor systems. They are useful to promote environmentally-friendly products and to push eco-design activities. But also, activities of circular economy such as recycling of the plastic parts from conveyor chains are examined. The article gives an overview of the goals achieved and the challenges ahead. Some of the achieved results will be presented.

2020 ◽  
Vol 62 (10) ◽  
pp. 985-992
Author(s):  
Robin Roj ◽  
Jessica Nürnberg ◽  
Ralf Theiß ◽  
Peter Dültgen

Abstract Since the processing of plastics by additive manufacturing techniques, for example, fused deposition modeling, has become quite common, it is mainly used for the production of unique pieces for private consumption as well as for prototyping in industry. In order to professionally manufacture plastic components in large amounts, due to time, cost, and quality factors, injection molding is more suitable. Nevertheless, it is of great interest to print plastic parts in small batch series for technical tasks. In this paper, FDM-produced tensile samples, made from 16 materials, printed in three orientations, are compared to compression molded components. In addition to ordinary filaments, composite materials with metal-, carbon-, wood-, and stone-additives are also examined. While some cavities emerged in both printed and molded samples, the results support the hypothesis that the mechanical properties depend on the components’ densities.


2021 ◽  
Vol 13 (22) ◽  
pp. 12747
Author(s):  
Fabiana Tornese ◽  
Maria Grazia Gnoni ◽  
Brian K. Thorn ◽  
Andres L. Carrano ◽  
Jennifer A. Pazour

Pallets are among the most used returnable transport items (RTIs), and they are critical assets for a supply chain as they have significant environmental and economic impacts during their whole life cycle. Differently from other packaging products, pallets are specifically designed to be repeatably repaired and reinjected for use. While this environmentally is beneficial as it reduces waste, it can create complex interactions between the stakeholder-involved manufacturers, pallet providers, users and recyclers. Further, the number of different actors is usually high, and the flow of materials among them needs to be coordinated. In addition, different business models can be implemented (such as internal management versus outsourcing) as well as logistics alternatives (closed- versus open-loop). Thus, the aims of this study are first to propose a systematization of design and management decisions regarding the pallet supply chain; next, to review the state of the art models and tools adopted to support each decision process relying on an analysis of the archival literature published between 1978 and 2021 on pallet management, to summarize the main decision problems addressed by the different stakeholders involved in the pallet life cycle and the adopted methods, and, finally, to highlight potential existing research gaps. This effort helps to outline potential contributions towards more sustainable pallet supply chains and can support pallet operators and companies in evaluating solutions to increase the economic and environmental sustainability of their pallet management. Results show that the perspectives of the pallet provider and of the supply chain are the most widely addressed in the existing literature, while those of pallet manufacturers and repairers should be further analyzed.


2011 ◽  
Vol 199-200 ◽  
pp. 1984-1987 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes a curved-layer additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. Researchers at AUT University in New Zealand and the National University of Singapore have developed a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This technology opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flat-layer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


2018 ◽  
Vol 55 (2) ◽  
pp. 211-214
Author(s):  
Nicoleta Elisabeta Pascu ◽  
Tiberiu Gabriel Dobrescu ◽  
Emilia Balan ◽  
Gabriel Jiga ◽  
Victor Adir

The paper shows the importance of designing an ABS (Acrylonitrile-Butadiene-Styrene) plastic part which will be produced using FDM (Fused Deposition Modeling) technology; it is obtained a product with the same characteristics provided by the operating guide book. Thus, this solution combines both the capacity of the designer as well as the applied technology and can produce similar or improved plastic components, at the same time maintaining the functional characteristics of the work piece. This paper is a plea for the application of 3D printing using FDM technology for manufacturing components (spare parts) out of production, because the technological systems users no longer have other solutions available for replacing outworn plastic parts. 3D printing using FDM technology is a fast option for replacing outworn components, the modeling, simulation and printing time being shorter than the purchase time of a new subassembly or assembly that has been remanufactured and modernized.


2021 ◽  
Author(s):  
Esther Aguado ◽  
Ricardo Sanz

The construction and operation of autonomous robots is heavily based of systemic conceptualizations of the reality constituted by the robot, its controller and the environment where it performs. In this chapter we address the role that computer ontologies play in the whole life cycle—engineering and operation—of autonomous robots: from its conception and construction by human engineering teams to deployment and autonomous operation in dynamic and uncertain environments. This chapter summarizes the state of the art, gives some examples and establishes a roadmap for future activity in this domain to produce shareable ontologies that could streamline autonomous robot development and exploitation.


2011 ◽  
Vol 467-469 ◽  
pp. 662-667 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes an additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. This could have a major impact in the fields of robotics and mechatronics as it has the potential to allow large wiring looms, often an issue with complex robotic systems, to be printed as an integral part of the products plastic shell. This paper describes the development of a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flatlayer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 382
Author(s):  
Joanna R. Rivero ◽  
Grigorios Panagakos ◽  
Austin Lieber ◽  
Katherine Hornbostel

Hollow fiber membrane contactors (HFMCs) can effectively separate CO2 from post-combustion flue gas by providing a high contact surface area between the flue gas and a liquid solvent. Accurate models of carbon capture HFMCs are necessary to understand the underlying transport processes and optimize HFMC designs. There are various methods for modeling HFMCs in 1D, 2D, or 3D. These methods include (but are not limited to): resistance-in-series, solution-diffusion, pore flow, Happel’s free surface model, and porous media modeling. This review paper discusses the state-of-the-art methods for modeling carbon capture HFMCs in 1D, 2D, and 3D. State-of-the-art 1D, 2D, and 3D carbon capture HFMC models are then compared in depth, based on their underlying assumptions. Numerical methods are also discussed, along with modeling to scale up HFMCs from the lab scale to the commercial scale.


Author(s):  
Yuchen Jiang ◽  
Shen Yin ◽  
Kuan Li ◽  
Hao Luo ◽  
Okyay Kaynak

A digital twin (DT) is classically defined as the virtual replica of a real-world product, system, being, communities, even cities that are continuously updated with data from its physical counterpart, as well as its environment. It bridges the virtual cyberspace with the physical entities and, as such, is considered to be the pillar of Industry 4.0 and the innovation backbone of the future. A DT is created and used throughout the whole life cycle of the entity it replicates, from cradle to grave, so to speak. This article focuses on the present state of the art of DTs, concentrating on the use of DTs in industry in the context of smart manufacturing, especially from the point of view of plantwide optimization. The main capabilities of DTs (mirroring, shadowing and threading) are discussed in this context. The article concludes with a perspective on the future. This article is part of the theme issue ‘Towards symbiotic autonomous systems’.


Sign in / Sign up

Export Citation Format

Share Document