scholarly journals Preliminary biodigestor design from swine manure generated in San Andrés island

2018 ◽  
Vol 1 (2) ◽  
pp. 241-246
Author(s):  
Luisa Marina Gómez-Torres ◽  
German Arturo López-Martínez ◽  
Carlos Julio Lozano-Piedrahita

Livestock production in San Andrés is subsistence, there are 2,223 pigs, in 205 farms. This technology generates serious contamination problems. The results of the dimensioning a biodigester are presented, with the BioDigestor© software, from swine manure, with the objective of observing the technical-economic feasibility for the implementation of this technology. The capacity of the biodigester allows the processing of 12.31 t/d of manure, generating 276 MWh/year of electrical energy through the operation of a generator engine that works with biogas. The dimensioning of the biodigester included the calculation of the volume of the feed tank, biodigester, discharge tank, biogas storage, sludge drying bed, collection and conduction systems, heating and biogas utilization. An economic study was carried out which allowed to conclude on the viability of the project. The total cost of the digester amounts to 723,986,263 COP, which is equivalent to 21,925 COP/kW installed.

1995 ◽  
Vol 10 (4) ◽  
pp. 163-166 ◽  
Author(s):  
Dana L. Hoag ◽  
Fritz M. Roka

AbstractLivestock production and manure handling decisions often have been treated in the literature as separate enterprises. Policymakers, too, have ignored the interactive nature of manure management by focusing on land application for nutrient disposal. This study outlines a systems approach to describe the interrelated decisions producers face, using examples from North Carolina and Iowa that show how producers' attitudes toward manure management lead them to handle manure differently in different regions. In North Carolina, nutrients in manure are “not wanted.” There are economic incentives to treat manure, thus reducing its nutrient content, and to apply it on as little land as possible. In Iowa, nutrients are “not wasted.” Producers conserve the nutrients in manure and use them more fully, applying manure to higher value crops such as corn. Policies that influence manure management can be made more effective by accounting for the differences in producers' incentives to waste or want the nutrients.


Author(s):  
Muhammadiya Rifqi ◽  
Heni Fitriani ◽  
Puteri Kusuma Wardhani

Buildings contribute more than 40% of world energy consumption, so it is feared that it will cause energy problems in thefuture, especially in the construction sector. One solution to reducing this problem is by analyzing energy use at the initialdesign stage and utilizing solar energy as one of the solar power plants (PLTS) in office buildings. To analyze the use ofenergy in buildings, Building Information Modeling (BIM) was used. The purpose of this research is to analyze the annualenergy level of office buildings in Palembang using BIM software, namely Autodesk Revit. The number of solar panels aswell as the amount of energy were also identified using web-based software (HelioScope) resulting the economic feasibilityas indicated by the installation of solar panels as a component of PV mini-grid. The results showed that the use of BIMtechnology in analyzing building energy can provide a detailed description of the building model at the design stage. Revitanalysis indicates that the building consumed electrical energy per year for about 3,647,713 kWh with a roof area of 1,657m2. In addition, based on the HelioScope analysis, the use of renewable energy from the installation of PLTS was 152,900kWh/year. Meanwhile, for economic feasibility analysis, the installation of PLTS in office buildings can provide a positive NetPresent Value (NPV), indicating a feasible project.


2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


2019 ◽  
Vol 3 (4) ◽  
pp. 87
Author(s):  
Massimo Rivarolo ◽  
Gustavo Riveros-Godoy ◽  
Loredana Magistri ◽  
Aristide F. Massardo

This paper aims at investigating clean hydrogen production from the large size (14 GW) hydroelectric power plant of Itaipu, located on the border between Paraguay and Brazil, the two countries that own and manage the plant. The hydrogen, produced by a water electrolysis process, is converted into ammonia through the well-known Haber-Bosch process. Hydraulic energy is employed to produce H2 and N2, respectively, from a large-scale electrolysis system and an air separation unit. An economic feasibility analysis is performed considering the low electrical energy price in this specific scenario and that Paraguay has strong excess of renewable electrical energy but presents a low penetration of electricity. The proposal is an alternative to increase the use of electricity in the country. Different plant sizes were investigated and, for each of them, ammonia production costs were determined and considered as a term of comparison with traditional ammonia synthesis plants, where H2 is produced from methane steam reforming and then purified. The study was performed employing a software developed by the authors’ research group at the University of Genoa. Finally, an energetic, environmental, and economic comparison with the standard production method from methane is presented.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4475 ◽  
Author(s):  
Mohd Amin Abd Majid ◽  
Hamdan Haji Ya ◽  
Othman Mamat ◽  
Shuhaimi Mahadzir

In order to cater for increased demand for natural gas (NG) by the industry, Malaysia is required to import liquid natural gas (LNG). This is done through PETRONAS GAS Sdn Bhd. For LNG regasification, two regasification terminals have been set up, one in Sungai Udang Melaka (RGTSU) and another at Pengerang Johor (RGTPJ). RGTSU started operation in 2013 while RGTPJ began operation in 2017. The capacities of RGTSU and RGTPJ are 3.8 (500 mmscfd) and 3.5 (490 mmscfd) MTPA, respectively. RGTSU is an offshore plant and uses an intermediate-fluid-vaporization (IFV) process for regasification. RGTPJ is an onshore plant and employs open-rack vaporization (ORV). It is known that a substantial amount of cold energy is released during the regasification process. However, neither plant captures the cold energy released during regasification. This techno economic study serves to evaluate the technical and economic feasibility of the cold energy available during regasification. It was estimated that approximately 47,214 and 88,383 kWh of cold energy could be generated daily at RGTPJ and RGTSU, respectively, during regasification processes. Converting this energy into RTh at 70% thermal efficiency, and taking the commercial rate of 0.549 Sen per RTh, for the 20-year project life, an internal rate of return (IRR) of up to 33% and 17% was estimated for RGTPJ and for RGTSU, respectively.


2019 ◽  
Vol 486 (5) ◽  
pp. 543-546
Author(s):  
T. S. Gabderakhmanova ◽  
O. S. Popel

The results of the economic feasibility assessment of photovoltaic (PV) microgeneration systems by the criterion of the cost of energy are presented. The assessment is based on dynamic modelling of three different configurations of grid-connected PV systems - without energy storage, with electrical energy storage and with thermal energy storage - performed for weather and electricity tariff conditions of several prospective Russian regions. Government support measures and regulatory standards currently developing in Russia for microgeneration technologies are taken into account. It is shown that under certain conditions PV microgeneration technologies could be economically feasible in some energy isolated areas and non-pricing zones of the wholesale electricity and capacity market of Russia, particularly in the Sakha Republic, whereas in pricing zones - couldn’t for any of the considered system configurations.


Author(s):  
Dhiman Chowdhury ◽  
Mohammad Sharif Miah ◽  
Md. Feroz Hossain ◽  
Uzzal Sarker

Emergency back-up power supply units are necessary in case of grid power shortage, considerably poor regulation and costly establishment of a power system facility. In this regard, power electronic converters based systems emerge as consistent, = properly controlled and inexpensive electrical energy providers. This paper presents an implemented design of a grid-tied emergency back-up power supply for medium and low power applications. There are a rectifier-link boost derived DC-DC battery charging circuit and a 4-switch push-pull power inverter (DC-AC) circuit, which are controlled by pulse width modulation (PWM) signals. A changeover relay based transfer switch controls the power flow towards the utility loads. During off-grid situations, loads are fed power by the proposed system and during on-grid situations, battery is charged by an AC-link rectifier-fed boost converter. Charging phenomenon of the battery is controlled by a relay switched protection circuit. Laboratory experiments are carried out extensively for different loads. Power quality assessments along with back-up durations are recorded and analyzed. In addition, a cost allocation affirms the economic feasibility of the proposed framework in case of reasonable consumer applications. The test-bed results corroborate the reliability of the research work.


2015 ◽  
Vol 1 (1) ◽  
pp. 29-34
Author(s):  
Amrizal Amrizal ◽  
Jeffry Lisra

The purpose of this study is to create an economically effective flyover construction in Medan so that this study can inspire the local official. Total cost of the construction is Rp. 720 billion which consist of  Rp 10.8 billion of flyover base structure construction cost, mobilization and road hardening cost, design and supervision cost; Rp 7.641 billion annual maintenance unit cost; Rp 22.923 billion/5 years periodically maintenance cost; and Rp 4,375,000/m2 estimated  land acquisition cost. The calculated benefit is travel cost cut-off which is the difference between the total travel cost with and without project. The travel cost consists of Vehicle Operational Cost and Time Value. Based on year 2014 analysis, the total amount of the cut-off saving of Simpang Selayang Flyover is Rp 30.06 billion. Economic feasibility analysis of horizon years for 30 years showed that the benefit obtained based on NPV, which is Rp 61,1 billion, is not adequate enough for 12,5 % annual interest rate, this can be seen by the 10.99% Internal Rate Return (IRR), so, the value of Simpang Selayang Flyover construction is not economically feasible yet.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Shadwan M. M. Esmail ◽  
Jae Hak Cheong

In the planning and management of the interim storage of spent nuclear fuel, the technical and economic parameters that are involved have a significant role in increasing the efficiency of the storage system. Optimal parameters will reduce the total economic costs for countries embarking on nuclear energy, such as the UAE. This study evaluated the design performance and economic feasibility of various structures and schedules, to determine an optimal combination of parameters for the management of spent nuclear fuel. With the introduction of various storage technology arrangements and expected costs per unit for the storage system design, we evaluated eight major scenarios, each with a cost analysis based on technological and economic issues. We executed a number of calculations based on the use of these storage technologies, and considered their investment costs. These calculations, which were aligned with the net present value approach and conducted using MS Project and MATLAB software programs, considered the capacities of the spent fuel pools and the amount of spent nuclear fuel (SNF) that will be transferred to dry storage facilities. As soon as they sufficiently cool, the spent nuclear fuel is to be stored in a pool storage facility. The results show that applying a centralized dry storage (CDS) system strategy is not an economically feasible solution, compared with using a permanent disposal facility (PDF) (unless the variable investment cost is reduced or changed). The optimal strategy involves operating a spent fuel pool island (SFPI) storage after the first 20 years of the start of the permanent shutdown of the reactor. After 20 years, the spent fuel is then transferred to a PDF. This strategy also results in a 20.9% to 26.1% reduction in the total cost compared with those of the other strategies. The total cost of the proposed strategy is approximately 4,307 million USD. The duration of the fuel storage and the investment cost, particularly the variable investment cost, directly affect the choice of facility storage.


Sign in / Sign up

Export Citation Format

Share Document