scholarly journals Fuzzy Systems: An Approach to 5G Networks Under the SDN Paradigm/ Sistemas Difusos: Una Aproximación a las redes 5G bajo el Paradigma SDN

2018 ◽  
Vol 1 (31) ◽  
pp. 96-110 ◽  
Author(s):  
Luis Felipe Albarracin Sanchez ◽  
Gustavo Adolfo Puerto Leguizamón

The exploitation that has had the fuzzy systems related to advances of 5G networks (Fifth Generation Mobile Networks) and how this development has been framed by the paradigm of SDN (Software Defined Networks) architectures are reviewed in this article. The first part reviewed terms required for understanding the technologies and their evolution; on which different scenarios are evaluated because they have contributed to the development of the definition of 5G networks. Following this, the research and development of the fuzzy systems applied to telecommunications, specifically 5G technology and SDN architectures were described. Finally, the respective conclusions of the fuzzy systems in the 5G networks and SDN architectures have been exposed.

LastMile ◽  
2021 ◽  
Vol 98 (6) ◽  
Author(s):  
A. Ivashkin

Today, many countries around the world are actively building fifth generation mobile networks (5G/IMT-2020). The magazine Last Mile asked the director of the Republican unitary enterprise for supervision on telecommunications "BelGIE" of the Republic of Belarus (hereinafter: State Enterprise "BelGIE") A.A. Ivashkin about the situation with the implementation of the 5G network in the Republic of Belarus.


2020 ◽  
Vol 10 (17) ◽  
pp. 5971 ◽  
Author(s):  
Sven Kuehn ◽  
Serge Pfeifer ◽  
Niels Kuster

In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.


2021 ◽  
Author(s):  
Hasan Tahsin Oğuz ◽  
Aykut Kalaycıoğlu

Abstract Self Organizing Networks (SONs) are considered as one of the key features for automation of network management in new generation of mobile communications. The upcoming fifth generation (5G) mobile networks are likely to offer new advancements for SON solutions. In SON concept, self-healing is a prominent task which comes along with cell outage detection and cell outage compensation. 5G networks are supposed to have ultra-dense deployments which makes cell outage detection critical and harder for network maintenance. Therefore, by imitating the ultra-dense multi-tiered scenarios regarding 5G networks, this study investigates femtocell outage detection with the help of Long Short- Term Memory (LSTM) and one-dimensional Convolutional Neural Networks (1D-CNN) by means of time sequences of Key Performance Indicator (KPI) parameters generated in user equipments. In proposed scheme, probable anomalies in femto access points (FAP) are detected and classified within a predetermined time sequence intervals. On the average, in more than 80% of the cases the outage states of the femtocells are correctly predicted among healthyand anomalous states.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Noé Torres-Cruz ◽  
Mario E. Rivero-Angeles ◽  
Gerardo Rubino ◽  
Ricardo Menchaca-Mendez ◽  
Rolando Menchaca-Mendez

We describe a Peer-to-Peer (P2P) network that is designed to support Video on Demand (VoD) services. This network is based on a video-file sharing mechanism that classifies peers according to the window (segment of the file) that they are downloading. This classification easily allows identifying peers that are able to share windows among them, so one of our major contributions is the definition of a mechanism that could be implemented to efficiently distribute video content in future 5G networks. Considering that cooperation among peers can be insufficient to guarantee an appropriate system performance, we also propose that this network must be assisted by upload bandwidth from servers; since these resources represent an extra cost to the service provider, especially in mobile networks, we complement our work by defining a scheme that efficiently allocates them only to those peers that are in windows with resources scarcity (we called it prioritized windows distribution scheme). On the basis of a fluid model and a Markov chain, we also developed a methodology that allows us to select the system parameters values (e.g., windows sizes or minimum servers upload bandwidth) that satisfy a set of Quality of Experience (QoE) parameters.


Author(s):  
Weston Mwashita ◽  
Marcel Ohanga Odhiambo

This research work presents a power control mechanism developed for ProSe-enabled sensors so that the sensors can be smoothly integrated into the fifth generation (5G) of mobile networks. It is strongly anticipated that 5G networks will provide an enabling environment for the 21st century innovations like the internet of things (IoT). Sensors are pivotal in IoT. The proposed power control mechanism involves an open loop power control (OLPC) mechanism that a ProSe-enabled sensor has to use to establish communication with a base station (BS) and a closed loop power control (CLPC) the BS then has use to establish transmit power levels for devices to be involved in a device to device (D2D) communication depending on the prevailing channel conditions. The results obtained demonstrate that the developed scheme does not adversely affect the quality of service (QoS) of a 5G mobile network.


Author(s):  
Ramon Perez ◽  
Jaime Garcia-Reinoso ◽  
Aitor Zabala ◽  
Pablo Serrano ◽  
Albert Banchs

AbstractThe fifth generation (5G) of mobile networks is designed to accommodate different types of use cases, each of them with different and stringent requirements and key performance indicators (KPIs). To support the optimization of the network performance and validation of the KPIs, there exist the necessity of a flexible and efficient monitoring system and capable of realizing multi-site and multi-stakeholder scenarios. Nevertheless, for the evolution from 5G to 6G, the network is envisioned as a user-driven, distributed Cloud computing system where the resource pool is foreseen to integrate the participating users. In this paper, we present a distributed monitoring architecture for Beyond 5G multi-site platforms, where different stakeholders share the resource pool in a distributed environment. Taking advantage of the usage of publish-subscribe mechanisms adapted to the Edge, the developed lightweight monitoring solution can manage large amounts of real-time traffic generated by the applications located in the resource pool. We assess the performance of the implemented paradigm, revealing some interesting insights about the platform, such as the effect caused by the throughput of monitoring data in performance parameters such as the latency and packet loss, or the presence of a saturation effect due to software limitations that impacts in the performance of the system under specific conditions. In the end, the performance evaluation process has confirmed that the monitoring platform suits the requirements of the proposed scenarios, being capable of handling similar workloads in real 5G and Beyond 5G scenarios, then discussing how the architecture could be mapped to these real scenarios.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1387
Author(s):  
Oswaldo Sebastian Peñaherrera-Pulla ◽  
Carlos Baena ◽  
Sergio Fortes ◽  
Eduardo Baena ◽  
Raquel Barco

Cloud Gaming is a cutting-edge paradigm in the video game provision where the graphics rendering and logic are computed in the cloud. This allows a user’s thin client systems with much more limited capabilities to offer a comparable experience with traditional local and online gaming but using reduced hardware requirements. In contrast, this approach stresses the communication networks between the client and the cloud. In this context, it is necessary to know how to configure the network in order to provide service with the best quality. To that end, the present work defines a novel framework for Cloud Gaming performance evaluation. This system is implemented in a real testbed and evaluates the Cloud Gaming approach for different transport networks (Ethernet, WiFi, and LTE (Long Term Evolution)) and scenarios, automating the acquisition of the gaming metrics. From this, the impact on the overall gaming experience is analyzed identifying the main parameters involved in its performance. Hence, the future lines for Cloud Gaming QoE-based (Quality of Experience) optimization are established, this way being of configuration, a trendy paradigm in the new-generation networks, such as 4G and 5G (Fourth and Fifth Generation of Mobile Networks).


2011 ◽  
Vol 314-316 ◽  
pp. 2152-2157
Author(s):  
Huan Gu

This document explains and demonstrates how to construct JDF data agent tools on .NET Linq platform. This Agent has the ability to create a Job, to add Nodes to an existing Job, and to modify existing Nodes. It is based on the structure of JDF standard and the definition of markup, and packages the node of each layer and its complicated parameters and data type into the object, forming a programming language model that is based on JDF markup object, and reducing the complexity of developing the printing digital process software basing-on JDFXML standard, providing a reference for developing the same distributed digital system basing-on XML driver.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-08
Author(s):  
Maharazu Mamman ◽  
Zurina Mohd Hanapi

Recently, many generations of mobile networks have changed from one transition to another transition. The mode of transition from the first generation (1G) to the fifth generation (5G) is characterized by a lot of performance challenges such as delay, speed of the users, mobility, and variety of services. Currently, different from prior generations, 5G is not only concerned with the mobile networks but also, with various applications and different services such as health sector, transportation, energy consumption, safety well as Smart City. All these services are incorporated by 5G. In this paper, we proposed a call admission control (CAC) algorithm with an efficient handoff for both 4G and 5G networks. Simulation is used to evaluate the effectiveness of the proposed algorithm, and the obtained results indicate it considerably performs better than do other algorithms based on valuable metrics such as data throughput, call blocking probability (CBP), and call dropping probability (CDP).


2021 ◽  
Vol 26 (jai2021.26(1)) ◽  
pp. 10-20
Author(s):  
Shevchenko A ◽  
◽  
Sosnitsky A ◽  

The main problem today in the research and development of AI is the lack of a scientific definition of Intelligence, since it is impossible to do something incomprehensible. This fundamentally delegitimizes all developments in this area and science as a whole as a product of exclusively intellectual activity, and any scientific use of the term «Intelligence» in its strict sense is unreasonable. In this paper, this problem is solved by transition to a more general universal paradigm of cognition, which allowed us to deduce the desired definition and universal formalism of Intelligence in its strong sense. Unlike previous publications, the ontology and properties of Intelligence are specified here as necessary components of Intelligence, which are subject to subsequent concretization and materialization in different niches of existence. The results of the work are of both fundamental and applied general scientific importance for all technical and humanitarian applications of Intelligence


Sign in / Sign up

Export Citation Format

Share Document