scholarly journals Combined control of fans of gas cooling units electric drives

Author(s):  
Alexander M. Abakumov ◽  
Pavel K. Kuznetsov

The problem of the temperature control at the outlet of gas cooling units of compressor stations of main gas pipelines is discussed. To solve the problemt, a discrete or frequency control of electric motors of fans of gas air cooling devices is used. The problems of electromagnetic compatibility that arise in typical power supply systems of gas cooling installations when connecting electric motors of fans through frequency converters are noted. A combined fan motor control system is considered, in which the electric motors are divided into two groups. The electric motors of the first group are connected to the network directly, the second through frequency converters. By reducing the number of electric motors connected to the network through frequency converters, the negative impact of frequency-controlled drives on the quality of electricity is reduced and the costs of modernization projects are reduced in comparison with the option of the variant using a frequency converter for each electric motor. The energy characteristics of the combined control system are analyzed. The relations that establish the relationship between the temperature difference at the cooling unit and the power of the fan motors for various control methods are obtained. The optimal control algorithm according to the criterion of maximum power saving is proposed, which provides for the interconnected control of the number of discrete-controlled motors and the speed of frequency-controlled drives. The variants of the implementation of the optimal control algorithm are discussed. Analytical expressions for power saving on the fan motor shaft in a combined system compared with a discrete one and a method for estimating energy savings are considered. The obtained results are recommended to be used to assess the technical and economic efficiency of projects for the modernization of electrical complexes of gas cooling units.

2021 ◽  
Vol 244 ◽  
pp. 09003
Author(s):  
Andrey Smolyaninov ◽  
Irina Poсebneva ◽  
Kirill Garmonov ◽  
Alexander Bahmetev

The article discusses the synthesis of a control system that implements optimal control of a double-drum water-tube boiler with natural circulation with effective suppression of disturbing influences and ensuring astatism of the control channel. One of the main channels of the object is described in the most detail, the channel “fuel consumption - pressure of superheated steam”, which is decoupled from others. Therefore, it is for him that we will carry out the calculation of the automatic control system (ACS), the reaction of the system to a stepwise disturbing effect is indicated. Using the method of mathematical modeling, the operability of the synthesized control system was confirmed, its operability when the parameters of the model were varied twice, which indicates the possibility of transition from model to physical tests of the proposed control algorithm.


Author(s):  
Viliam Fedak ◽  
Frantisek Durovsky ◽  
Robert Uveges ◽  
Karol Kyslan ◽  
Milan Lacko

The paper deals with development and implementation of the direct and inverse kinematics to control of 6 DOF industrial robot SEF-ROBOTER SR25 by a real time control system. To obtain the angular position of each joint an iterative algorithm is applied that is developed in the Simulink program. This solution creates a basis for real time control of the robot drives utilizing features of SIEMENS SINAMICS family of frequency converters. The developed control system presents a universal platform enabling to debug any robot control algorithm and also easy to change a desired trajectory of the end effector. The equipment is suitable for testing different trajectories of the robot and is suitable also for educational purposes.


2013 ◽  
Vol 62 (4) ◽  
pp. 663-675
Author(s):  
Wojciech Kołton

Abstract This article presents the time optimal control system adopted to control double winding VCM motor. This kind of control is widely used in hard disk drive servo for head positioning. Mathematical model of double winding VCM motor is presented, and its implementation in MATLAB/Simulink is shown. The extended time optimal control algorithm is implemented on dSpace DS1104 board. The results obtained from simulation and real measurements are compared and discussed


2019 ◽  
Vol 15 (2) ◽  
pp. 62-70
Author(s):  
Aleksandr Korneyev ◽  
Mikhail Gorobetz ◽  
Ivars Alps ◽  
Leonids Ribickis

AbstractThe paper aims at researching and developing an adaptive control system algorithm and its implementation and integration in the control system of the existing unmanned aerial vehicle (UAV). The authors describe the mathematical model of UAV and target function for energy consumption minimisation and possible searching algorithms for UAV optimal control from an energy efficiency perspective. There are two main goals: to minimise energy consumption and to develop and investigate an adaptive control algorithm for UAV traction drive in order to increase energy efficiency.The optimal control algorithm is based on two target function values, when comparing and generating corresponding control signals. The main advantage of the proposed algorithm is its unification and usability in any electrical UAV with a different number of traction drives, different or variable mass and other configuration differences without any initial manual setup. Any electric UAV is able to move with maximal energy efficiency using the proposed algorithm.


Author(s):  
Diana M. AYUKAEVA ◽  
Fedor A. VORONIN ◽  
Mikhail A. POLUARSHINOV ◽  
Mikhail A. KHARCHIKOV

The paper discusses the process of integrating scientific equipment into the Russian Segment of the International Space Station (ISS RS) to conduct space experiment using the ISS IS information and control system. The paper addresses the stages in ground processing of scientific equipment that are critical for its successful operation after delivery to the ISS RS: tests on the hardware (vibration and hydraulic tests, electromagnetic compatibility tests, incoming inspection), development of the software for the equipment using ground debugging facility and conducting integrated tests in the checkout facility. It points out the need to update the existing stages of ground preparations for experiments to reduce the hardware ground processing time. Taking as examples the space experiment Terminator and experiments conducted using cargo transportation spacecraft Progress, the paper resents results obtained through the use of the described approach. Key words: information and control system, scientific equipment, space experiment, International Space Station, logistics spacecraft Progress, microgravity.


2017 ◽  
Vol 3 (2) ◽  
pp. 88
Author(s):  
Suci Rahmatia ◽  
Marsah Zaysi Makhudzia

<p><em>Abstrak <strong>- </strong></em><strong>Transformator adalah peralatan listrik yang sangat vital dalam proses pembangkitan maupun transmisi energi listrik karena transformator dapat menaikkan atau menurunkan tegangan. Pada proses menaikkan dan menurunkan tegangan biasanya sering timbul panas akibat rugi – rugi tembaga pada inti besi dan kumparannya sehingga pada kondisi overload akan menimbulkan pemanasan yang berlebih dan dapat mempengaruhi kinerja transformator. Oleh karena itu dibuat sistem kontrol temperatur pada transformer yang dapat mengontrol temperatur di dalam transformator saat bekerja pada kondisi overload, sehigga transformatornya tidak terbakar. Dial thermometer digunakan sebagai alat yang mengontrol temperatur transformator pada sistem kontrol temperatur. Agar mendapatkan sistem kontrol yang optimal, maka setting temperatur pada dial thermometer di sesuaikan dengan temperatur maksimal tranformator dapat bekerja. Sehingga pada saat temperatur tertentu dial thermometer dapat memberikan sinyal untuk membunyikan alarm dan mengaktifkan kontrol kipas sehingga kipas dapat bekerja menurunkan temperatur transformator.<em></em></strong></p><p><strong><em> </em></strong></p><p><strong><em>Kata kunci - </em></strong><em>transformator, rugi – rugi tembaga, temperatur, sistem kontrol, dial thermometer<strong>.</strong></em></p><p><strong><em> </em></strong></p><p><em>Abstract <strong>- </strong></em><strong>A transformer is an electrical device that is vital in the generation and transmission of electrical energy because the transformer can raise (stepping up) or lower (stepping down) the voltage. In the process of raising and lowering the voltage is usually often caused heat loss of copper in iron core and coil so that the overload condition will cause excessive warming and can affect the performance of the transformer. Therefore, a temperature control system on the transformer can control the temperature inside the transformer while working under overload conditions, so the transformer is not burned. Dial thermometer is used as a device that controls the temperature of the transformer in the temperature control system. In order to obtain an optimal control system, the temperature setting on the dial thermometer adjusted to the maximum transformer temperature can work. So that when a certain temperature dial thermometer can provide a signal to sound the alarm and activate the fan control so that the fan can work down the transformer temperature.</strong></p><p><strong> </strong></p><p><strong><em>Keywords -  </em></strong><em>transformator, loss of copper, themperature, control system, dial thermometer<strong></strong></em></p>


Author(s):  
Sadegh Vaez-Zadeh

In this chapter, three control methods recently developed for or applied to electric motors in general and to permanent magnet synchronous (PMS) motors, in particular, are presented. The methods include model predictive control (MPC), deadbeat control (DBC), and combined vector and direct torque control (CC). The fundamental principles of the methods are explained, the machine models appropriate to the methods are derived, and the control systems are explained. The PMS motor performances under the control systems are also investigated. It is elaborated that MPC is capable of controlling the motor under an optimal performance according to a defined objective function. DBC, on the other hand, provides a very fast response in a single operating cycle. Finally, combined control produces motor dynamics faster than one under VC, with a smoother performance than the one under DTC.


Sign in / Sign up

Export Citation Format

Share Document