Improvement of Uniform Oil Displacement Technology on the Example of Kazakhstani Fields

2018 ◽  
Vol 9 (3) ◽  
pp. 542
Author(s):  
Abdeli D. ZHUMADILULI ◽  
Irina V. PANFILOV ◽  
Jamilyam A. ISMAILOVA

Most of oil companies today are focused on increasing the recovery factor from their oil fields. New drilling and well technologies as well as last advances in reservoir management, monitoring and Enhanced Oil Recovery (EOR) methods are thought to play a major role to meet the future demand of energy. Current decline in discovery of new oilfields intensified by a decline in oil prices make industrial companies to work on development of new efficient and economic techniques that will allow better production at lower cost. One such technology developed at Kazakh National Research University is presented in this paper. The latter propose the use of specific perforated holes on tubing liners in order to control the rate of water injection into variably permeable layers and to prevent non-uniform displacement of oil. The study was initially conducted on experimental facility that proved a positive correlation between the perforation density and water flow rates. Then the simulation test was performed using the data from several Kazakhstani oil fields. The results show an increase of sweep efficiency as well as a decrease in water-cut compared to traditional well case.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Lisha Zhao ◽  
Li Li ◽  
Zhongbao Wu ◽  
Chenshuo Zhang

An analytical model has been developed for quantitative evaluation of vertical sweep efficiency based on heterogeneous multilayer reservoirs. By applying the Buckley-Leverett displacement mechanism, a theoretical relationship is deduced to describe dynamic changes of the front of water injection, water saturation of producing well, and swept volume during waterflooding under the condition of constant pressure, which substitutes for the condition of constant rate in the traditional way. Then, this method of calculating sweep efficiency is applied from single layer to multilayers, which can be used to accurately calculate the sweep efficiency of heterogeneous reservoirs and evaluate the degree of waterflooding in multilayer reservoirs. In the case study, the water frontal position, water cut, volumetric sweep efficiency, and oil recovery are compared between commingled injection and zonal injection by applying the derived equations. The results are verified by numerical simulators, respectively. It is shown that zonal injection works better than commingled injection in respect of sweep efficiency and oil recovery and has a longer period of water free production.


2021 ◽  
Vol 11 (5) ◽  
pp. 2233-2257
Author(s):  
Perekaboere Ivy Sagbana ◽  
Ahmad Sami Abushaikha

AbstractThe production of excess water during oil recovery creates not only a major technical problem but also an environmental and cost impact. This increasing problem has forced oil companies to reconsider methods that promote an increase in oil recovery and a decrease in water production. Many techniques have been applied over the years to reduce water cut, with the application of chemicals being one of them. Chemicals such as polymer gels have been widely and successfully implemented in several oil fields for conformance control. In recent years, the application of foam and emulsions for enhanced oil recovery projects has been investigated and implemented in oil fields, but studies have shown that they can equally act as conformance control agents with very promising results. In this paper, we present a comprehensive review of the application of polymer gel, foam and emulsion for conformance control. Various aspects of these chemical-based conformance control methods such as the mechanisms, properties, applications, experimental and numerical studies and the parameters that affect the successful field application of these methods have been discussed in this paper. Including the recent advances in chemical-based conformance control agents has also been highlighted in this paper.


Author(s):  
G Moldabayeva ◽  
R Suleimenova ◽  
N Buktukov ◽  
M Mergenov

Purpose. To develop a technology to increase the oil recovery of formations using injection of polymer compositions. Methodology. For this study, practical methods were used such as enhanced oil recovery using stimulating technologies, technology using polymer systems based on a water-soluble polymer acrylamide, and emulsion-polymer technology. To achieve the conformance control, which was a prerequisite for testing, a thorough selection of wells was carried out, as well as an analysis of their hydrodynamic connection. Findings. As a result of using the method for limiting water inflows in the development of oil-bearing formations, redistribution of filtration channels, and a decrease in the production of fossil water as well as stabilisation of water cut were achieved. Originality. The scientific novelty of the study is the withdrawal of wells that are able to redistribute the volume of water injection at perforation intervals. Increased sweep efficiency and pressure at the wellhead at the beginning and at the end of the conformance control indicate a decrease in the conductivity of high-permeability formation intervals. Practical value. Application of the proposed technology for limiting water inflows will make it possible to develop low-permeability interlayers with filtration flows. The wells brought to a stable production rate during the study will ensure a decrease in formation water production and the water cut of the produced products, as well as stabilisation of the water cut over a certain period.


Author(s):  
Dike Fitriansyah Putra ◽  
Lazuardhy Vozika Futur ◽  
Mursyidah Umar

Waterflood introduces in the oil field a couple of years ago. Several waterflood schemes have been implemented in the fields to get the best incremental oil, such as peripheral injection, pattern waterflood, and etcetera. Many waterflood schemes are not working properly to boost the oil recovery due to unpredicted and unexpected water tide array. Then, the tracer practice started to be used for getting a better picture of the transmissibility reservoir as well as the direction of water pathway. This practice honors the parameters, such pressure, water cut, GOR, and rates. The streamline modeling is used to map the tracer, and it concludes that the selection of location of the injector should be based on the highest oil recovery achieved. Subsequently, the cyclic water injection method is one alternative. Apparently, this approach yields a quantify incremental recovery.  This research utilizes the pressure different approach to figure out the route of water in the formation. The inter-well tracer technique in this modeling study is a tool to review communication between injectors and producers in the existing pattern. Many scenario should be tried to find the best options for the new pattern opportunities. In parallel, a innovative scheme of waterflood technique should be implemented too for escalating oil recovery. The stream pathway observes a new potential of the waterflood scheme. It is called "cyclic injection" scheme.  The novelty of this approach is the ability to solve the poor sweep efficiency due to improper pathway of water influx in the oil bearing".


2014 ◽  
Vol 695 ◽  
pp. 499-502 ◽  
Author(s):  
Mohamad Faizul Mat Ali ◽  
Radzuan Junin ◽  
Nor Hidayah Md Aziz ◽  
Adibah Salleh

Malaysia oilfield especially in Malay basin has currently show sign of maturity phase which involving high water-cut and also pressure declining. In recent event, Malaysia through Petroliam Nasional Berhad (PETRONAS) will be first implemented an enhanced oil recovery (EOR) project at the Tapis oilfield and is scheduled to start operations in 2014. In this project, techniques utilizing water-alternating-gas (WAG) injection which is a type of gas flooding method in EOR are expected to improve oil recovery to the field. However, application of gas flooding in EOR process has a few flaws which including poor sweep efficiency due to high mobility ratio of oil and gas that promotes an early breakthrough. Therefore, a concept of carbonated water injection (CWI) in which utilizing CO2, has ability to dissolve in water prior to injection was applied. This study is carried out to assess the suitability of CWI to be implemented in improving oil recovery in simulated sandstone reservoir. A series of displacement test to investigate the range of recovery improvement at different CO2 concentrations was carried out with different recovery mode stages. Wettability alteration properties of CWI also become one of the focuses of the study. The outcome of this study has shown a promising result in recovered residual oil by alternating the wettability characteristic of porous media becomes more water-wet.


2021 ◽  
Author(s):  
Effiong Essien ◽  
Uchenna Onyejiaka ◽  
Stanley Onwukwe ◽  
Nnaemeka Uwaezuoke

Abstract Poor formation permeability and near well bore damage may limit water injectivity into the reservoir in a water injection project. This paper seeks to evaluate the effect of radial drilling technique on water injectivity and oil recovery in water flooding operation. Radial drilling technology utilizes hydraulic energy to create lateral perpendicular small holes through the casing into the reservoir. The holes may extend to 100 m (330 ft) into the reservoir to access fresh formations beyond the near wellbore, and damage zone. A black oil simulator (Eclipse 100) was used to modeling a lateral radial drill from the borehole into the reservoir, and that of a conventional perforation of the wellbore respectively. A simulation study was carried out using various presumed radial drill configurations in determining injectivity index, displacement efficiencies, recovery factor and water cut of the process. The determined results were further compared with that of the conventional perforation process case respectively. The results show a significant improvement in water injectivity in radial drill case with the increasing length and number of radials as compared to the conventional wellbore perforation case. The determined Recovery factor shows a progressive increase with increase in the numbers of radials drilled, irrespective of the radial length. However, it was observed that, the more the number and length of the radials drilled in to the reservoir, the higher the water cut from producer wells. Radial Drilling Technology, therefore, has a promising potential to improving water injectivity into the reservoir and thereby optimizing oil recovery in a water flooding operation.


2018 ◽  
Vol 785 ◽  
pp. 159-170
Author(s):  
Vadim Aleksandrov ◽  
Kirill Galinskij ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Yuriy Sivkov

One of the most important aspects in the activities of oil companies in the Western Siberia is to improve the effectiveness of water-flooding as the main method of impact on the formation. This is due to the fact that at the present time reservoirs of a complex structure with difficult to recover reserves prevail among newly introduced development objects, the extraction of which is extremely difficult using a simple method of water injection volumes regulation. First of all, this refers to reservoirs of Jurassic deposits, which are characterized by the most complex geological structure and porosity and permeability properties. A promising direction in improving the water-flooding system at such objects is the use of physical and chemical technologies to enhance the oil recovery of formations, and primarily, referring to the diverter technology. The research objective is to evaluate the effectiveness of using “hard” type diverter compositions to enhance oil recovery of formations. With the help of detailed oil-field analysis and field-geophysical studies, the nature of the development of oil reserves for Jurassic development sites has been assessed.


Author(s):  
G.Zh. Moldabayeva ◽  
◽  
A.Kh. Agzamov ◽  
R.T. Suleimenova ◽  
D.K. Elefteriadi ◽  
...  

This article discusses a digital geological model, the transfer of borehole data to the geological grid, and the modeling of the technology of alternating steam and water injection. Alternating injection involves the cyclic injection of steam and water into an injection well in high-viscosity oil fields. The essence of this technology is that during the steam injection for 2-4 months, the formation warms up, leading to a decrease in viscosity and an increase in oil mobility. Then comes the period of water injection, during which the production of already warmed oil continues and the formation pressure is maintained. For digital geological modeling, the following data were collected, processed and prepared: a list of wells that open the object of modeling, coordinates of wellheads, well altitudinal data, inclinometry of well trajectories, GМS data on wells, analysis of wells drilled with core sampling, and digitized seismic data (structural surfaces on the roof of stratigraphic horizons, parameter maps, contact surfaces, faults, structural maps on the roof of target horizons with faults, isochron maps, velocity maps).


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 470
Author(s):  
Josipa Hranić ◽  
Sara Raos ◽  
Eric Leoutre ◽  
Ivan Rajšl

There are numerous oil fields that are approaching the end of their lifetime and that have great geothermal potential considering temperature and water cut. On the other hand, the oil industry is facing challenges due to increasingly stringent environmental regulations. An example of this is the case of France where oil extraction will be forbidden starting from the year 2035. Therefore, some oil companies are considering switching from the oil business to investing in geothermal projects conducted on existing oil wells. The proposed methodology and developed conversions present the evaluation of existing geothermal potentials for each oil field in terms of water temperature and flow rate. An additional important aspect is also the spatial distribution of existing oil wells related to the specific oil field. This paper proposes a two-stage clustering approach for grouping similar wells in terms of their temperature properties. Once grouped on a temperature basis, these clusters should be clustered once more with respect to their spatial arrangement in order to optimize the location of production facilities. The outputs regarding production quantities and economic and environmental aspects will provide insight into the optimal scenario for oil-to-water conversion. The scenarios differ in terms of produced energy and technology used. A case study has been developed where the comparison of overall fields and clustered fields is shown, together with the formed scenarios that can further determine the possible conversion of petroleum assets to a geothermal assets.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Zheyu Liu ◽  
Yiqiang Li ◽  
Xin Chen ◽  
Yukun Chen ◽  
Jianrong Lyu ◽  
...  

Summary Surfactant-polymer (SP) flooding has been regarded as an efficient technique for enhanced oil recovery in the development of mature oil fields, especially for those with heterogeneous conglomerate reservoirs. However, people are still unclear about the optimal SP flooding initiation timing (OSPT) that is expected to contribute to the maximum ultimate recovery factor in the case with a limited amount of SP solution injection. Accordingly, this study aims to investigate OSPT through conducting a series of experiments, including nuclear magnetic resonance (NMR) online monitoring, full-diameter coreflooding, and microfluidic study. The fractional-flow curve is used to identify OSPT, of which the effect on the oil recovery is analyzed. OSPT is demonstrated to be dependent on the amount of injected SP solution. An earlier-started SP flooding is favorable for achieving higher oil recovery factors under the premise of sufficiently high SP solution injection [more than 1.5 pore volume (PV)]. With the commonly used 0.65 PV of SP solution in the reservoir scale, OSPT is suggested to be at the moment when a water cut of 80 to 90% is reached. The formation of dense emulsions in the early-started SP flooding affects the performance of the post-waterflooding, which eventually decreases the ultimate oil recoveries because of inadequacy of SP solution. An earlier-started SP flooding contributes to a larger swept volume, but the initial efficiency of the SP flooding is lower than that of the waterflooding when the injection pressure is constant. OSPT is proposed through analyzing the fractional-flow curve in the case of 0.65 PV of SP injection, and the determined OSPT is validated by coreflooding experiments and field data. Moreover, OSPT for the conglomerate reservoir is suggested to be earlier than that for the relatively homogenous sandstone reservoir.


Sign in / Sign up

Export Citation Format

Share Document