scholarly journals Improvement of oil field development using enhanced oil recovery methods

Author(s):  
G Moldabayeva ◽  
R Suleimenova ◽  
N Buktukov ◽  
M Mergenov

Purpose. To develop a technology to increase the oil recovery of formations using injection of polymer compositions. Methodology. For this study, practical methods were used such as enhanced oil recovery using stimulating technologies, technology using polymer systems based on a water-soluble polymer acrylamide, and emulsion-polymer technology. To achieve the conformance control, which was a prerequisite for testing, a thorough selection of wells was carried out, as well as an analysis of their hydrodynamic connection. Findings. As a result of using the method for limiting water inflows in the development of oil-bearing formations, redistribution of filtration channels, and a decrease in the production of fossil water as well as stabilisation of water cut were achieved. Originality. The scientific novelty of the study is the withdrawal of wells that are able to redistribute the volume of water injection at perforation intervals. Increased sweep efficiency and pressure at the wellhead at the beginning and at the end of the conformance control indicate a decrease in the conductivity of high-permeability formation intervals. Practical value. Application of the proposed technology for limiting water inflows will make it possible to develop low-permeability interlayers with filtration flows. The wells brought to a stable production rate during the study will ensure a decrease in formation water production and the water cut of the produced products, as well as stabilisation of the water cut over a certain period.

2020 ◽  
Vol 36 (7) ◽  
pp. 789-830 ◽  
Author(s):  
Jinesh Machale ◽  
Subrata Kumar Majumder ◽  
Pallab Ghosh ◽  
Tushar Kanti Sen

AbstractA significant amount of oil (i.e. 60–70%) remains trapped in reservoirs after the conventional primary and secondary methods of oil recovery. Enhanced oil recovery (EOR) methods are therefore necessary to recover the major fraction of unrecovered trapped oil from reservoirs to meet the present-day energy demands. The chemical EOR method is one of the promising methods where various chemical additives, such as alkalis, surfactants, polymer, and the combination of all alkali–surfactant–polymer (ASP) or surfactant–polymer (SP) solutions, are injected into the reservoir to improve the displacement and sweep efficiency. Every oil field has different conditions, which imposes new challenges toward alternative but more effective EOR techniques. Among such attractive alternative additives are polymeric surfactants, natural surfactants, nanoparticles, and self-assembled polymer systems for EOR. In this paper, water-soluble chemical additives such as alkalis, surfactants, polymer, and ASP or SP solution for chemical EOR are highlighted. This review also discusses the concepts and techniques related to the chemical methods of EOR, and highlights the rheological properties of the chemicals involved in the efficiency of EOR methods.


Author(s):  
Dike Fitriansyah Putra ◽  
Lazuardhy Vozika Futur ◽  
Mursyidah Umar

Waterflood introduces in the oil field a couple of years ago. Several waterflood schemes have been implemented in the fields to get the best incremental oil, such as peripheral injection, pattern waterflood, and etcetera. Many waterflood schemes are not working properly to boost the oil recovery due to unpredicted and unexpected water tide array. Then, the tracer practice started to be used for getting a better picture of the transmissibility reservoir as well as the direction of water pathway. This practice honors the parameters, such pressure, water cut, GOR, and rates. The streamline modeling is used to map the tracer, and it concludes that the selection of location of the injector should be based on the highest oil recovery achieved. Subsequently, the cyclic water injection method is one alternative. Apparently, this approach yields a quantify incremental recovery.  This research utilizes the pressure different approach to figure out the route of water in the formation. The inter-well tracer technique in this modeling study is a tool to review communication between injectors and producers in the existing pattern. Many scenario should be tried to find the best options for the new pattern opportunities. In parallel, a innovative scheme of waterflood technique should be implemented too for escalating oil recovery. The stream pathway observes a new potential of the waterflood scheme. It is called "cyclic injection" scheme.  The novelty of this approach is the ability to solve the poor sweep efficiency due to improper pathway of water influx in the oil bearing".


2021 ◽  
Vol 874 ◽  
pp. 45-49
Author(s):  
Ihsan Arifin ◽  
Grandprix Thomryes Marth Kadja ◽  
Cynthia L. Radiman

Enhanced Oil Recovery (EOR) is a promising technology for increasing crude oil production, especially from old wells. Polymer flooding is one of the techniques used in EOR in which the water-soluble polymer is added to increase the viscosity of the injected fluid. However, this technique has not been implemented in Indonesia due to the unavailability of locally-synthesized polymers. Therefore, this research aims to synthesize polyacrylamides and their partially-hydrolyzed derivatives and to study the possibility of their utilization for the EOR application. Various polymerization conditions using potassium persulfate (KPS) as initiators have been realized and the resulting polymers were characterized using FTIR spectroscopy and rheology measurement. It was found that higher monomer concentration resulted in higher viscosity-average molecular weight of polyacrylamide. Further study revealed that the hydrolysis of polyacrylamide by alkaline solution significantly increased the viscosity of 1000 ppm solution from 1.5 to 145.40 cP at room temperature, which is comparable to one of the commercial products. These results showed that the simple synthesis and hydrolysis method could be effectively used to produce water-soluble polymers for the EOR application.


2021 ◽  
Vol 11 (4) ◽  
pp. 1905-1913
Author(s):  
Tagwa A. Musa ◽  
Ahmed F. Ibrahim ◽  
Hisham A. Nasr-El-Din ◽  
Anas. M. Hassan

AbstractChemical enhanced oil recovery (EOR) processes are usually used as additives for hydrocarbon production due to its simplicity and relatively reasonable additional production costs. Polymer flooding uses polymer solutions to increase oil recovery by decreasing the water/oil mobility ratio by increasing the viscosity of the displacing water. The commonly used synthetic water-soluble polymer in EOR application is partially hydrolyzed polyacrylamide (HPAM). However, synthetic polymers in general are not attractive because of high cost, environmental concerns, limitation in high temperature, and high-salinity environment. Guar gum is an environmentally friendly natural water-soluble polymer available in large quantities in many countries and widely used in various applications in the oil and gas industry especially in drilling fluids and hydraulic fracturing operations; however, very limited studies investigated on guar as a polymer for EOR and no any study investigated on its uses in high-temperature and high -salinity reservoirs. The objective of this study is to confirm the use of guar gum as a natural polymer for EOR applications in sandstone reservoirs and investigate its applicability for high-temperature and high-salinity reservoirs. The study experimentally investigated rheological characteristics of a natural polymer obtained from guar gum with consideration of high temperature (up to 210 °F) and high salinity (up to 20% NaCl) and tested the guar solution as EOR polymer. The results of this study show that the guar solution can be used as an environmentally friendly polymer to enhance oil recovery. Based on the results, it can be concluded that guar gum shows shear-thinning behavior and strongly susceptible to microbial degradation but also shows a very good properties stability in high temperature and salinity, where in low shear rate case, about 100 cp viscosity can be achieved at 210 °F for polymer prepared in deionized water. Guar polymer shows good viscosity in the presence of 20% NaCl where the viscosity is acceptable for temperature less than 190 °F. Also, the flooding experiment shows that the recovery factor can be increased by 16%.


2018 ◽  
Vol 9 (3) ◽  
pp. 542
Author(s):  
Abdeli D. ZHUMADILULI ◽  
Irina V. PANFILOV ◽  
Jamilyam A. ISMAILOVA

Most of oil companies today are focused on increasing the recovery factor from their oil fields. New drilling and well technologies as well as last advances in reservoir management, monitoring and Enhanced Oil Recovery (EOR) methods are thought to play a major role to meet the future demand of energy. Current decline in discovery of new oilfields intensified by a decline in oil prices make industrial companies to work on development of new efficient and economic techniques that will allow better production at lower cost. One such technology developed at Kazakh National Research University is presented in this paper. The latter propose the use of specific perforated holes on tubing liners in order to control the rate of water injection into variably permeable layers and to prevent non-uniform displacement of oil. The study was initially conducted on experimental facility that proved a positive correlation between the perforation density and water flow rates. Then the simulation test was performed using the data from several Kazakhstani oil fields. The results show an increase of sweep efficiency as well as a decrease in water-cut compared to traditional well case.


2014 ◽  
Vol 900 ◽  
pp. 677-680
Author(s):  
Chun Hong Nie

This paper has discussed the characteristics, roles, feasibility and obvious effects of the technology by applying electric field to enhance oil recovery when the oil field is in high water cut stage and super high water cut stage. In view that most oil wells in old oil field have entered into the super high water cut production, the remaining oil in the main reservoir is in fragmented distribution with poor results of water injection and new reserves of oil mostly have a low penetration rate and are thin layers of poor physical properties, the use of the direct current field in period of high water cut is the best policy to achieve high and stable yield and is fairly promising.


2006 ◽  
Vol 9 (06) ◽  
pp. 664-673 ◽  
Author(s):  
Harry L. Chang ◽  
Xingguang Sui ◽  
Long Xiao ◽  
Zhidong Guo ◽  
Yuming Yao ◽  
...  

Summary The first large-scale colloidal dispersion gel (CDG) pilot test was conducted in the largest oil field in China, Daqing oil field. The project was initiated in May 1999, and injection of chemical slugs was completed in May 2003. This paper provides detailed descriptions of the gel-system characterization, chemical-slug optimization, project execution, performance analysis, injection facility design, and economics. The improvements of permeability variation and sweep efficiency were demonstrated by lower water cut, higher oil rate, improved injection profiles, and the increase of the total dissolved solids (TDS) in production wells. The ultimate incremental oil recovery (defined as the amount of oil recovered above the projected waterflood recovery at 98% water cut) in the pilot area would be approximately 15% of the original oil in place (OOIP). The economic analysis showed that the chemical costs were approximately U.S. $2.72 per barrel of incremental oil recovered. Results are presented in 15 tables and 8 figures. Introduction Achieving mobility control by increasing the injection fluid viscosity and achieving profile modification by adjusting the permeability variation in depth are two main methods of improving the sweep efficiency in highly heterogeneous and moderate viscous-oil reservoirs. In recent years (Wang et al. 1995, 2000, 2002; Guo et al. 2000), the addition of high-molecular-weight (MW) water-soluble polymers to injection water to increase viscosity has been applied successfully in the field on commercial scales. Weak gels, such as CDGs, formed with low-concentration polymers and small amounts of crosslinkers such as the trivalent cations aluminum (Al3+) and chromium (Cr3+) also have been applied successfully for in-depth profile modification (Fielding et al. 1994; Smith 1995; Smith and Mack 1997). Typical behaviors of CDGs and testing methods are given in the literature (Smith 1989; Ranganathan et al. 1997; Rocha et al. 1989; Seright 1994). The giant Daqing oil field is located in the far northeast part of China. The majority of the reservoir belongs to a lacustrine sedimentary deposit with multiple intervals. The combination of heterogeneous sand layers [Dykstra-Parsons (1950) heterogeneity indices above 0.5], medium oil viscosities (9 to 11 cp), mild reservoir temperatures (~45°C), and low-salinity reservoir brines [5,000 to 7,000 parts per million (ppm)] makes it a good candidate for chemical enhanced-oil-recovery processes. Daqing has successfully implemented commercial-scale polymer flooding (PF) since the early 1990s (Chang et al. 2006). Because the PF process is designed primarily to improve the mobility ratio (Chang 1978), additional oil may be recovered by using weak gels to further improve the vertical sweep. Along with the successes of PF in the Daqing oil field, two undesirable results were also observed:high concentrations of polymer produced in production wells owing to the injection of large amounts of polymer (~1000 ppm and 50% pore volume) andthe fast decline in oil rates and increase in water cuts after polymer injection was terminated. In 1997, a joint laboratory study between the Daqing oil field and Tiorco Inc. was conducted to investigate the potential of using the CDG process, or the CDG process with PF, to further improve the recovery efficiency, lower the polymer production in producing wells, and prolong the flood life. The joint laboratory study was completed in 1998 with encouraging results (Smith et al. 2000). Additional laboratory studies to further characterize the CDG gellation process, optimize the formulation, and investigate the degradation mechanisms were conducted in the Daqing field laboratories before the pilot test. A simplistic model was used to optimize the slug designs and predict incremental oil recovery. Initial designs called for a 25% pore volume (Vp) CDG slug with 700 ppm polymer and the polymer-to-crosslinker ratio (P/X) of 20 in a single inverted five-spot patten. Predicted incremental recovery was approximately 9% of OOIP.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Lisha Zhao ◽  
Li Li ◽  
Zhongbao Wu ◽  
Chenshuo Zhang

An analytical model has been developed for quantitative evaluation of vertical sweep efficiency based on heterogeneous multilayer reservoirs. By applying the Buckley-Leverett displacement mechanism, a theoretical relationship is deduced to describe dynamic changes of the front of water injection, water saturation of producing well, and swept volume during waterflooding under the condition of constant pressure, which substitutes for the condition of constant rate in the traditional way. Then, this method of calculating sweep efficiency is applied from single layer to multilayers, which can be used to accurately calculate the sweep efficiency of heterogeneous reservoirs and evaluate the degree of waterflooding in multilayer reservoirs. In the case study, the water frontal position, water cut, volumetric sweep efficiency, and oil recovery are compared between commingled injection and zonal injection by applying the derived equations. The results are verified by numerical simulators, respectively. It is shown that zonal injection works better than commingled injection in respect of sweep efficiency and oil recovery and has a longer period of water free production.


1990 ◽  
Vol 29 (4) ◽  
pp. 407-415
Author(s):  
Shamel I. Al-bassam ◽  
Mustafa M. F. Al-jarrah

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1086 ◽  
Author(s):  
Haiyan Zhou ◽  
Afshin Davarpanah

Simultaneous utilization of surfactant and preformed particle gel (henceforth; PPG) flooding on the oil recovery enhancement has been widely investigated as a preferable enhanced oil recovery technique after the polymer flooding. In this paper, a numerical model is developed to simulate the profound impact of hybrid chemical enhanced oil recovery methods (PPG/polymer/surfactant) in sandstone reservoirs. Moreover, the gel particle conformance control is considered in the developed model after polymer flooding performances on the oil recovery enhancement. To validate the developed model, two sets of experimental field data from Daqing oil field (PPG conformance control after polymer flooding) and Shengli oil field (PPG-surfactant flooding after polymer flooding) are used to check the reliability of the model. Combination of preformed gel particles, polymers and surfactants due to the deformation, swelling, and physicochemical properties of gel particles can mobilize the trapped oil through the porous media to enhance oil recovery factor by blocking the high permeable channels. As a result, PPG conformance control plays an essential role in oil recovery enhancement. Furthermore, experimental data of PPG/polymer/surfactant flooding in the Shengli field and its comparison with the proposed model indicated that the model and experimental field data are in a good agreement. Consequently, the coupled model of surfactant and PPG flooding after polymer flooding performances has led to more recovery factor rather than the basic chemical recovery techniques.


Sign in / Sign up

Export Citation Format

Share Document