Suction Pressures with respect to the Operational Modes using the Multi-bore Capillary Membranes in the Membrane Bioreactor

2021 ◽  
Vol 31 (5) ◽  
pp. 343-350
Author(s):  
Min Hyeong Kim ◽  
◽  
Eeung Mo Koo ◽  
Min Soo Lee ◽  
Kun Yong Chung
Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


Author(s):  
Kaisong Zhang ◽  
◽  
Olusegun Abass ◽  
Xing Wu ◽  
Youzhi Guo

2019 ◽  
Vol 12 (3) ◽  
pp. 213-219
Author(s):  
E. T. Ilin ◽  
S. P. Pechenkin ◽  
A. V. Svetushkov ◽  
J. A. Kozlova

During non-heating and transition period, most of cogeneration turbines operate with a lower heat extraction section actuated only due to a number of restrictions on the maximum and minimum pressure levels in the upper and lower heat extraction sections at operation of the turbine. For turbines of model T-250/300-240, the minimum permissible level of steam pressure in the upper heat extraction section, according to manufacturer data, is set to 0.06 MPa. During the non-heating and transition period, the supply water temperature is usually set in the range of 70–75°С. In order to maintain that temperature of supply water, the steam pressure in the upper heat extraction section should be below the minimum permissible level. As a result, the turbine operates with only the low-pressure heat extraction section actuated, which ensures operation without restrictions, but with a lower efficiency. The authors have introduced a set of measures, which enable to avoid those restrictions and implement two-stage heating of supply water. In this case, on connection of the upper heating extraction section, the pressure in the same is maintained at the minimum permissible level. Heat output characteristics are provided by having some of supply water delivered bypassing the group of network heaters. This operational mode enables to increase the turbine actual heat drop, to reduce the cooling steam flow into the low-pressure section and, accordingly, into the condenser, and to reduce temperature drops in network water heaters. Results of the research of operational modes for turbines of type T-250/300-240 in the non-heating and transition period with one and two-stage heating are provided. The economic efficiency of proposed operational modes was researched, which shows the effectiveness of those modes during non-heating and transition period. The limits of the efficiency of using these modes are determined.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Kong Linghan ◽  
Zhao Weidian ◽  
Ran Deqin ◽  
Hui Bing ◽  
Lu Linguo ◽  
...  

2020 ◽  
pp. 376-379
Author(s):  
S.A. Yakovlev ◽  
M.M. Zamal’dinov ◽  
A.A. Glushchenko ◽  
I.R. Salakhutdinov

The hardening methods of titanium alloys are analyzed. Effect of heating temperature on resistance of VT22 alloy structures strengthened by electromechanical processing is defined. Results of change in hardness of the strengthened structures depending on heating temperature are presented. Recommendations on the operational modes of machine parts made of alloy VT22 strengthened by electromechanical processing are provided.


2010 ◽  
Vol 5 (3) ◽  
Author(s):  
Cheng-Nan Chang ◽  
Li-Ling Lee ◽  
Han-Hsien Huang ◽  
Ying-Chih Chiu

The performance of a real-time controlled Sequencing Batch Membrane Bioreactor (SBMBR) for removing organic matter and nitrogen from synthetic wastewater has been investigated in this study under two specific ammonia loadings of 0.0086 and 0.0045g NH4+-N gVSS−1 day−1. Laboratory results indicate that both COD and DOC removal are greater than 97.5% (w/w) but the major benefit of using membrane for solid-liquid separation is that the effluent can be decanted through the membrane while aeration is continued during the draw stage. With a continued aeration, the sludge cake layer is prevented from forming thus alleviating the membrane clogging problem in addition to significant nitrification activities observed in the draw stage. With adequate aeration in the oxic stage, the nitrogen removal efficiency exceeding 99% can be achieved with the SBMBR system. Furthermore, the SBMBR system has also been used to study the occurrence of ammonia valley and nitrate knee that can be used for real-time control of the biological process. Under appropriate ammonia loading rates, applicable ammonia valley and nitrate knee are detected. The real-time control of the SBMBR can be performed based on on-line ORP and pH measurements.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 39-47
Author(s):  
Y. Matsui ◽  
A. Yuasa ◽  
F. Colas

The effects of operational modes on the removal of a synthetic organic chemical (SOC) in natural water by powdered activated carbon (PAC) during ultrafiltration (UF) were studied, through model simulations and experiments. The removal percentage of the trace SOC was independent of its influent concentration for a given PAC dose. The minimum PAC dosage required to achieve a desired effluent concentration could quickly be optimized from the C/C0 plot as a function of the PAC dosage. The cross-flow operation was not advantageous over the dead-end regarding the SOC removal. Added PAC was re-circulated as a suspension in the UF loop for only a short time even under the cross-flow velocity of gt; 1.0 m/s. The cross-flow condition did not contribute much to the suspending of PAC. The pulse PAC addition at the beginning of a filtration cycle resulted in somewhat better SOC removal than the continuous PAC addition. The increased NOM loading on PAC which was dosed in a pulse and stayed longer in the UF loop could possibly further decrease the adsorption rate.


Sign in / Sign up

Export Citation Format

Share Document